Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(1): 110-114
DOI: 10.1055/s-0033-1340068
DOI: 10.1055/s-0033-1340068
letter
Direct C-2 Acylation of Thiazoles with Aldehydes via Metal- and Solvent-Free C–H Activation in the Presence of tert-Butyl Hydroperoxide
Further Information
Publication History
Received: 31 August 2013
Accepted after revision: 01 October 2013
Publication Date:
05 November 2013 (online)
Abstract
A novel and efficient methodology for the synthesis of heteroaryl ketones by C–H activation of aldehydes and thiazoles is developed. The reaction occurs smoothly, under metal-, acid- and solvent-free conditions using tert-butyl hydroperoxide as the oxidant under an air atmosphere, to afford a wide range of heteroaryl ketones in moderate to good yields. The sp2 C–H bonds in the aldehyde and thiazole undergo direct oxidative cross-coupling, resulting in C-2 acylation of the azole.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Gualtiere F, Brody G, Fieldsteel AH, Skinner WA. J. Med. Chem. 1971; 14: 546
- 1b Zificsak CA, Hlasta DJ. Tetrahedron 2004; 60: 8991
- 1c Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
- 1d Trost BM, Fandrick DR. Aldrichimica Acta 2007; 40: 57
- 1e Satoh T, Miura M. Chem. Lett. 2007; 36: 200
- 2a Kim SH, Chang S. Org. Lett. 2010; 12: 1868
- 2b Kawano T, Matsuyama N, Hirano K, Satoh T, Miura M. J. Org. Chem. 2010; 75: 1764
- 2c Liangyan C, Yan H, Xuesen F. Chin. J. Chem. 2012; 30: 992
- 3a Wang Q, Schreiber SL. Org. Lett. 2009; 11: 5178
- 3b Armstrong A, Collins JC. Angew. Chem. Int. Ed. 2010; 49: 2282
- 3c Kawano T, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2010; 132: 6900
- 3d Lamani M, Prabhu KR. J. Org. Chem. 2011; 76: 7938
- 3e Guo S, Qian B, Xie Y, Xia C, Huang H. Org. Lett. 2011; 13: 522
- 3f Miyasaka M, Hirano K, Satoh T, Kowalczyk R, Bolm C, Miura M. Org. Lett. 2011; 13: 359
- 3g Wagh YS, Sawant DN, Bhanage BM. Tetrahedron Lett. 2012; 53: 3482
- 4a Zhang L, Cheng J, Ohishi T, Hou Z. Angew. Chem. Int. Ed. 2010; 49: 8670
- 4b Vechorkin O, Hirt N, Hu X. Org. Lett. 2010; 12: 3567
- 5a Vechorkin O, Proust V, Hu X. Angew. Chem. Int. Ed. 2010; 49: 3061
- 5b Yao T, Hirano K, Satoh T, Miura M. Chem. Eur. J. 2010; 16: 12307
- 5c Ioannidou HA, Koutentis PA. Org. Lett. 2011; 13: 1510
- 6 So CM, Lau CP, Kwong FY. Chem. Eur. J. 2011; 17: 761
- 7 Do HQ, Daugulis O. Org. Lett. 2010; 12: 2517
- 8a Roger J, Verrier C, Goff RL, Hoarau C, Doucet H. ChemSusChem 2009; 2: 951
- 8b Shibahara F, Yamaguchi E, Murai T. Chem. Commun. 2010; 46: 2471
- 8c Ionita M, Roger J, Doucet H. ChemSusChem 2010; 3: 367
- 8d Bensaid S, Doucet H. ChemSusChem 2012; 5: 1559
- 9 Besselievre F, Piguel S, Mahuteau-Betzer F, Grierson DS. Org. Lett. 2008; 10: 4029
- 10a Regel E. Liebigs Ann. Chem. 1977; 159
- 10b Harn NK, Gramer CJ, Anderson BA. Tetrahedron Lett. 1995; 36: 9453
- 11a Erne VM, Erlenmeyer H. Helv. Chim. Acta 1948; 31: 652
- 11b Kurkjy RP, Brown EV. J. Am. Chem. Soc. 1952; 74: 6260
- 11c Chikashita H, Ishibaba M, Ori K, Itoh K. Bull. Chem. Soc. Jpn. 1988; 61: 3637
- 11d Kohata K, Kawamonzen Y, Odashima T, Ishii H. Bull. Chem. Soc. Jpn. 1990; 63: 3398
- 11e Asakawa K.-I, Dhennenberg JJ, Fitch KJ, Hall SS, Kadowaki C, Karady S, Kii S, Maeda K, Marcune BF, Mase T, Miller RA, Reamer RA, Tschaen DM. Tetrahedron Lett. 2005; 46: 5081
- 12 Wu X.-F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 7316
- 13a Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
- 13b Basle O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
- 13c Li M, Ge H. Org. Lett. 2010; 12: 3464
- 13d Xiao F, Shuai Q, Zhao F, Basle O, Deng G, Li C.-J. Org. Lett. 2011; 13: 1614
- 13e Guin S, Rout SK, Banerjee A, Nandi S, Patel BK. Org. Lett. 2012; 14: 5294
- 13f Zhou W, Li H, Wang L. Org. Lett. 2012; 14: 4594
- 13g Zhang Q, Yang F, Wu Y. Chem. Commun. 2013; 49: 6837
- 14a Fang P, Li M, Ge H. J. Am. Chem. Soc. 2010; 132: 11898
- 14b Yuan Y, Chen D, Wang X. Adv. Synth. Catal. 2011; 353: 3373
- 14c Chan C.-W, Zhou Z, Yu W.-Y. Adv. Synth. Catal. 2011; 353: 2999
- 14d Li C, Wang L, Li P, Zhou W. Chem. Eur. J. 2011; 17: 10208
- 14e Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011; 13: 3258
- 14f Wu Y, Choy PY, Maob F, Kwong FY. Chem. Commun. 2013; 49: 689
- 15a Chan C.-W, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 3926
- 15b Park J, Park E, Kim A, Lee Y, Chi K.-W, Kwak JH, Jung YH, Kim IS. Org. Lett. 2011; 13: 4390
- 15c Xie Y, Yang Y, Huang L, Zhang X, Zhang Y. Org. Lett. 2012; 14: 1238
- 15d Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2012; 14: 4358
- 15e Pana C, Jiab X, Cheng J. Synthesis 2012; 44: 677
- 15f Zhang Q, Li C, Yang F, Li J, Wu Y. Tetrahedron 2013; 69: 320
- 16 He T, Li H, Li P, Wang L. Chem. Commun. 2011; 47: 8946
- 17 He T, Yu L, Zhang L, Wang L, Wang M. Org. Lett. 2011; 13: 5016
- 18a Zhu Y.-P, Lian M, Jia F.-C, Liu M.-C, Yuan J.-J, Gao Q.-H, Wu A.-X. Chem. Commun. 2012; 48: 9086
- 18b Zhu Y.-P, Jia F.-C, Liu M.-C, Wu A.-X. Org. Lett. 2012; 14: 4414
- 18c Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
- 19 Brenchley G, Farmer LJ, Harrington EM, Knegtel R, O’Donnell M, Salituro FG, Studley JR, Wang J. EP1605946, 2005 ; Chem. Abstr. 2005, 141, 350190t.
- 20a Pesson M (Laboratoire Roger Bellon) GB1112128, 1965 ; Chem. Abstr. 1968, 69, 77258x
- 20b Singh H, Singh DJ, Kumar S. Tetrahedron 1992; 48: 4545
- 20c Toh QY, McNally A, Vera S, Erdmann N, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
- 21 (4,5-Dimethylthiazol-2-yl)(phenyl)methanone (3a); Typical Procedure An oven-dried 15 mL glass vial containing a magnetic stir bar was charged with 4,5-dimethylthiazole (1a) (1 mmol) and benzaldehyde (2a) (4 mmol). The vial was then flushed with air and sealed with a cap. Next, TBHP (4 mmol, 5–6 M in decane) was added dropwise with stirring and the mixture was further stirred at 100 °C for 16 h under an air atm. After cooling the mixture to r.t., it was washed with sat. NaHCO3 solution (1 × 30 mL). The product was extracted with EtOAc (3 × 10 mL) and dried over Na2SO4. The solvent was removed under vacuum and the crude residue was purified by column chromatography (silica gel, 60–100 mesh; PE–EtOAc) to afford pure coupled product 3a. 1H NMR (300 MHz, CDCl3): δ = 8.44–8.41 (m, 2 H), 7.56–7.51 (m, 3 H), 2.47 (s, 3 H), 2.45 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 184.08, 162.58, 151.77, 135.92, 133.25, 131.10, 128.68, 124.02, 15.14, 12.02. GC–MS (EI, 70 eV): m/z (%) = 217 (20) [M]+, 188 (52), 105 (100), 85 (37), 77 (87), 53 (10), 51 (31). HRMS (ESI): m/z [M + H]+ calcd for C12H12NOS: 218.0640; found: 218.0634. (4,5-Dimethylthiazol-2-yl)(p-tolyl)methanone (3b) 1H NMR (300 MHz, CDCl3): δ = 8.34 (d, J = 8.05 Hz, 2 H), 7.29 (d, J = 8.05 Hz, 2 H), 2.46 (s, 3 H), 2.44 (s, 3 H), 2.42 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 183.69, 162.89, 151.60, 144.15, 135.57, 133.01, 131.23, 129.07, 21.80, 15.14, 12.00. GC–MS (EI, 70 eV): m/z (%) = 231 (23) [M]+, 202 (55), 119 (100), 91 (55), 89 (13), 86 (27), 65 (29), 45 (30), 44 (23), 39 (11). HRMS (ESI): m/z [M + H]+ calcd for C13H14NOS: 232.0796; found: 232.0791. (2,6-Dimethylphenyl)(4,5-dimethylthiazol-2-yl)methanone (3c) 1H NMR (300 MHz, CDCl3): δ = 7.52 (t, J = 7.6 Hz, 1 H), 7.05 (d, J = 7.6 Hz, 2 H), 2.45 (s, 3 H), 2.35 (s, 3 H), 2.19 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 191.94, 161.71, 152.86, 138.78, 130.63, 129.32, 127.62, 119.38, 19.70, 15.06, 12.22. HRMS (ESI): m/z [M + H]+ calcd for C14H16NOS: 246.0953; found: 246.0947. GC–MS (EI, 70 eV): m/z (%) = 245 (38) [M]+, 228 (16), 218 (18), 217 (100), 216 (63), 202 (18), 133 (37), 105 (56), 103 (24), 86 (60), 79 (32), 78 (14), 77 (41), 71 (22), 53 16), 39 (13).