Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(3): 403-406
DOI: 10.1055/s-0033-1340218
DOI: 10.1055/s-0033-1340218
letter
One-Pot Synthesis of Nuevamine Aza-Analogues by Combined Use of an Oxidative Ugi Type Reaction and Aza-Diels–Alder Cycloaddition
Further Information
Publication History
Received: 09 October 2013
Accepted after revision: 10 October 2013
Publication Date:
02 December 2013 (online)
Abstract
A rapid and efficient one-pot synthesis of a series of four novel nuevamine aza-analogues is described based on the oxidative Ugi-type reaction and aza-Diels–Alder reaction as post-functionalization. A simple IBX-mediated oxidation of a secondary amine followed by isonitrile α-addition and finally an aza-Diels–Alder cycloaddition provides the desired compounds in excellent overall yields considering the short reaction time, atom economy, and the molecular complexity of the final products. This protocol presents a highly attractive procedure for the rapid generation of fused polyheterocycles.
Key words
one-pot synthesis - natural products - oxidation - oxidative Ugi reaction - aza-Diels–Alder cycloadditionSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Alonso R, Castedo L, Domínguez D. Tetrahedron Lett. 1985; 26: 2925
- 1b Valencia E, Freyer AJ, Shamma M. Tetrahedron Lett. 1984; 25: 599
- 2 Moreau A, Couture A, Deniau E, Grandclaudon P, Lebrun S. Tetrahedron 2004; 60: 6169
- 3a Castro-Castillo V, Rebolledo-Fuentes M, Cassels BK. J. Chil. Chem. Soc. 2009; 54: 417
- 3b Zubkov FI, Ershova JD, Orlova AA, Zaytsev VP, Nikitina EV, Peregudov AS, Gurbanov AV, Borisov RS, Khrustalev VN, Maharramov AM, Varlamov AV. Tetrahedron 2009; 65: 3789
- 3c Wakchaure PB, Easwar S, Puranik VG, Argade NP. Tetrahedron 2008; 64: 1786
- 3d Boltukhina EV, Zubkov FI, Varlamov AV. Chem. Heterocycl. Compd. 2006; 42: 971
- 3e Moreau A, Couture A, Deniau E, Grandclaudon P. Eur. J. Org. Chem. 2005; 3437
- 4 Ertl P, Jelfs S, Mühlbacher J, Schuffenhauer A, Selzer P. J. Med. Chem. 2006; 49: 4568
- 5 Somei M, Yamada F. Nat. Prod. Rep. 2004; 21: 278
- 6 Nefzi A, Ostresh JM, Houghten RA. Chem. Rev. 1997; 97: 449
- 7 Goodman SN, Mans DM, Sisko J, Yin H. Org. Lett. 2012; 14: 1604
- 8 Deguest G, Devineau A, Bischoff L, Fruit C, Marsais F. Org. Lett. 2006; 8: 5889
- 9a Bahajaj AA, Vernon JM, Wilson GD. J. Chem. Soc., Perkin Trans. 1 2001; 1446
- 9b Hitchings GJ, Vernon JM. J. Chem. Soc., Perkin Trans. 1 1990; 1757
- 9c Hitchings GJ, Vernon JM. J. Chem. Soc., Chem. Commun. 1988; 623
- 10a Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
- 10b Dömling A. Chem. Rev. 2006; 106: 17
- 11a Burke SD, Piscopio AD, Kort ME, Matulenko MA, Parker MH, Armistead DM, Shankaran K. J. Org. Chem. 1994; 56: 332
- 11b Garçon S, Vassiliou S, Cavicchioli M, Hartmann B, Monteiro N, Balme G. J. Org. Chem. 2001; 66: 4069
- 11c Wang Y, Dong XY, Larock RC. J. Org. Chem. 2003; 68: 3090
- 11d Stragies R, Blechert S. J. Am. Chem. Soc. 2000; 122: 9584
- 11e Bowers MM, Carroll P, Joullié MM. J. Am. Chem. Soc. 1999; 121: 6355
- 12 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 13 Bianeymé H, Hulme C, Oddon G, Schimitt P. Chem. Eur. J. 2000; 6: 3321
- 14 Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
- 15a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 15b Ugi I, Werner B, Dömling A. Molecules 2003; 8: 53
- 16 Hulme C, Gore V. Curr. Med. Chem. 2003; 10: 51
- 17a El Kaïmim L, Grimaud L, Miranda LD, Vieu E. Tetrahedron Lett. 2006; 47: 8259
- 17b El Kaïm L, Grimaud L, Vieu E. Org. Lett. 2007; 9: 4171
- 18a Cristau P, Vors JP, Zhu J. Org. Lett. 2001; 3: 4079
- 18b Tempest P, Ma V, Kelly MG, Jones W, Hulme C. Tetrahedron Lett. 2001; 42: 4963
- 18c Cristau P, Vors JP, Zhu J. Tetrahedron 2003; 59: 7859
- 18d Spatz JH, Umkehrer M, Kalinski C, Ross G, Burdack C, Kolb J, Bach T. Tetrahedron Lett. 2007; 48: 8060
- 19a Marcaccini S, Pepino R, Cruz Pozo M. Tetrahedron Lett. 2001; 42: 2727
- 19b Umkehrer M, Kolb J, Burdack C, Ross G, Hiller W. Tetrahedron Lett. 2004; 45: 6421
- 19c Neo AG, Delgado J, Polo C, Marcaccini S, Marcos CF. Tetrahedron Lett. 2005; 46: 23
- 19d Golebiowski A, Klopfenstein SR, Shao X, Chen JJ, Colson AO, Grieb AL, Russell AF. Org. Lett. 2000; 2: 2615
- 19e Golebiowski A, Jozwik J, Klopfenstein SR, Colson AO, Grieb AL, Russell AF, Rastogi VL, Diven CF, Portlock DE, Chen JJ. J. Comb. Chem. 2002; 4: 584
- 19f De Greef M, Abeln S, Belkasmi K, Dömling A, Orru RV. A, Wessjohann LA. Synthesis 2006; 3997
- 19g Xing X, Wu J, Feng G, Dai W.-M. Tetrahedron 2006; 62: 6774
- 19h Banfi L, Basso A, Guanti G, Kielland N, Repetto C, Riva R. J. Org. Chem. 2007; 72: 2151
- 20a Sun X, Janvier P, Zhao G, Bienaymé H, Zhu J. Org. Lett. 2001; 3: 877
- 20b Akritopoulou-Zanze I, Gracias V, Moore JD, Djuric SW. Tetrahedron Lett. 2004; 45: 3421
- 20c Akritopoulou-Zanze I, Gracias V, Djuric SW. Tetrahedron Lett. 2004; 45: 8439
- 20d Paulvannan K. J. Org. Chem. 2004; 69: 1207
- 20e Gracias V, Darczak D, Gasiecki AF, Djuric SW. Tetrahedron Lett. 2005; 46: 9053
- 20f Pirali T, Tron GC, Zhu J. Org. Lett. 2006; 8: 4145
- 20g Akritopoulou-Zanze I, Whitehead A, Waters JE, Henry RF, Djuric SW. Org. Lett. 2007; 9: 1299
- 21a Piscopio AD, Miller JF, Koch K. Tetrahedron 1999; 55: 8189
- 21b Beck B, Larbig G, Mejat B, Magnin-Lachaux M, Picard A, Herdtweck E, Dömling A. Org. Lett. 2003; 5: 1047
- 21c Hebach C, Kazmaier U. Chem. Commun. 2003; 596
- 21d Sello JK, Andreana PR, Lee D, Schreiber SL. Org. Lett. 2003; 5: 4125
- 21e Banfi L, Basso A, Guanti G, Riva R. Tetrahedron Lett. 2003; 44: 7655
- 21f Krelaus R, Westermann B. Tetrahedron Lett. 2004; 45: 5987
- 21g Dietrich SA, Banfi L, Basso A, Damonte G, Guanti G, Riva R. Org. Biomol. Chem. 2005; 3: 97
- 21h Gracias V, Gasiecki AF, Djuric SW. Tetrahedron Lett. 2005; 46: 9049
- 21i Ribelin TP, Judd AS, Akritopoulou Zanze I, Henry RF, Cross JL, Whittern DN, Djuric SW. Org. Lett. 2007; 9: 5119
- 22 Zamudio-Medina A, García-González MC, Padilla J, González-Zamora E. Tetrahedron Lett. 2010; 51: 4837
- 23 Islas-Jácome A, González-Zamora E, Gámez-Montaño R. Tetrahedron Lett. 2011; 52: 5245
- 24 Islas-Jácome A, Cárdenas-Galindo LE, Jerezano AV, Tamariz J, González-Zamora E, Gámez-Montaño R. Synlett 2012; 2951
- 25 Ngouansavanh T, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 5775
- 26 Nicolaou KC, Mathison CJ. N, Montagnon T. Angew. Chem. Int. Ed. 2003; 42: 4077
- 27 Ugi I, Meyr R. Angew. Chem. 1958; 70: 702
- 28 Jiang GX, Chen J, Huang JS, Che CM. Org. Lett. 2009; 11: 4568
- 29 Ye X, Xie CS, Pan YY, Han LH, Xie T. Org. Lett. 2010; 12: 4240
- 30 Ye X, Xie Ch, Huang R, Liu J. Synlett 2012; 23: 409
- 31 Gámez-Montaño R, González-Zamora E, Potier P, Zhu J. Tetrahedron 2002; 58: 6351
- 32 González-Zamora E, Fayol A, Bois-Choussy M, Chiaroni A, Zhu J. Chem. Commun. 2001; 1684
- 33 Fayol A, Gonzalez-Zamora E, Bois-Choussy M, Zhu J. Heterocycles 2007; 73: 729
- 34 Firestone RA, Harris EE, Reuter W. Tetrahedron 1967; 23: 943
- 35 Synthesis of 2a-d; Typical Procedure: To a stirred solution of 1,2,3,4-tetrahydroisoquinoline (3; 0.885 mmol, 1.0 equiv) in THF at reflux, IBX (4; 1.77 mmol, 2.0 equiv) was added. After 30 min, 2-isocyano-1-morpholino-3-phenylpropan-1-one (6a; 0.885 mmol, 1.0 equiv) was added. Finally, after 60 min, maleic anhydride (9; 1.062 mmol, 1.2 equiv) was added. After 30 min, the reaction mixture was filtered and the solvent was removed under reduced pressure. The crude material was dissolved in CH2Cl2 (5.0 mL) and washed with sat. aq NaHCO3 (3 × 15 mL) followed by an excess of brine. The crude product was immediately purified by silica-gel column chromatography (hexane–EtOAc, 2:1 v/v) to afford the desired nuevamine aza-analogue 2a (42% yield) as a white solid. Mp 63 °C; Rf = 0.18 (hexane–EtOAc, 2:1). 1H NMR (500 MHz, CDCl3): δ = 8.10–8.06 (m, 1 H, ArH), 7.83 (s, 1 H, ArH), 7.35–7.32 (m, 3 H, ArH), 7.30–7.27 (m, 1 H, ArH), 7.23–7.19 (m, 3 H, ArH), 7.16–7.13 (m, 1 H, ArH), 5.58 (s, 1 H, CH), 4.61–4.56 (m, 1 H, CHH), 4.46 (d, J = 14.2 Hz, 1 H, CHH), 4.32 (d, J = 14.2 Hz, 1 H, CHH), 3.85–3.80 (m, 4 H, 2 × CH2), 3.48–3.42 (m, 1 H, CHH), 3.10–3.02 (m, 1 H, CHH), 2.87–2.82 (m, 4 H, 2 × CH2), 2.81–2.76 (m, 1 H, CHH). 13C NMR (125 MHz, CDCl3): δ = 166.6 (C=O), 161.4 (ArC), 159.1 (ArC), 148.0 (ArC), 139.7 (ArC), 133.8 (ArC), 132.8 (ArC), 129.4 (ArC), 129.2 (ArC), 128.5 (ArC), 127.6 (ArC), 127.1 (ArC), 126.6 (ArC), 126.4 (ArC), 124.8 (ArC), 123.7 (ArC), 67.4 (CH2), 59.4 (CH), 53.2 (CH2), 40.2 (CH2), 37.9 (CH2), 29.5 (CH2). FTIR (film in CH2Cl2): 1692 (C=O) cm–1. HRMS: m/z calcd. for C26H25N3O2: 411.1947; found: 411.1949.
- 36 Janvier P, Sun X, Bienayme H, Zhu J. J. Am. Chem. Soc. 2002; 124: 2560
- 37a Pan S, List B. Angew. Chem. Int. Ed. 2008; 47: 3622
- 37b Ireland SM, Tye H, Whittaker M. Tetrahedron Lett. 2003; 44: 4369