Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(10): 1395-1402
DOI: 10.1055/s-0033-1341242
DOI: 10.1055/s-0033-1341242
letter
Palladium-Catalyzed Double Activation and Arylation of 2° and 3° C(sp3)–H Bonds of the Norbornane System: Formation of a C–C Bond at the Bridgehead Carbon and Bridgehead Quaternary Stereocenter
Further Information
Publication History
Received: 19 February 2014
Accepted after revision: 25 March 2014
Publication Date:
29 April 2014 (online)
![](https://www.thieme-connect.de/media/synlett/201410/lookinside/thumbnails/10.1055-s-0033-1341242-1.jpg)
Abstract
Pd-catalyzed activation and direct arylation of both 2° and the bridgehead 3° (sp3) C–H bonds and an unprecedented C–C bond formation at the bridgehead carbon of the norbornane system are reported. The assembly of bridgehead-substituted norbornane frameworks having contiguous stereocenters was accomplished. X-ray crystal structure analysis of representative molecules unambiguously established the stereochemistry.
Key words
arylation - bridgehead substitution - C–H activation - diastereoselectivity - palladium - stereoselective synthesisSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Carey FA, Sundberg RJ. Advanced Organic Chemistry . 5th ed., Vols. 1 and 2 Springer; New York: 2007
- 1b Warrener RN. Eur. J. Org. Chem. 2000; 3363
- 1c Bear BR, Sparks SM, Shea KJ. Angew. Chem. Int. Ed. 2001; 40: 820
- 1d Jiang Y, Chen C.-F. Eur. J. Org. Chem. 2011; 6377
- 1e Fringuelli F, Taticchi A. The Diels–Alder Reaction: Selected Practical Methods . Wiley; New York: 2002
- 1f Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 1g Liao C.-C, Peddinti RK. Acc. Chem. Res. 2002; 35: 856
- 1h Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
- 1i Simpkins NS. Chem. Commun. 2013; 49: 1042
- 1j Hayes CJ, Simpkins NS, Kirk DT, Mitchell L, Baudoux J, Blake AJ, Wilson C. J. Am. Chem. Soc. 2009; 131: 8196
- 1k Csende F, Fulop F, Stajer G. Curr. Org. Synth. 2008; 5: 173
- 1l Butkus E. Synlett 2001; 1827
- 1m Wang Z. Synlett 2012; 2311
- 1n Njardarson JT. Tetrahedron 2011; 23: 7631
- 1o Brown HC. Acc. Chem. Res. 1973; 6: 377
- 1p Presset M, Coquerel Y, Rodriguez J. Chem. Rev. 2013; 113: 525
- 1q Ruiz M, López-Alvarado P, Giorgi G, Menéndez JC. Chem. Soc. Rev. 2011; 40: 3445
- 2a Kraus GA, Hon Y.-S, Thomas PJ, Laramay S, Liras S, Hanson J. Chem. Rev. 1989; 89: 1591
- 2b Paquette LA. Chem. Soc. Rev. 1995; 24: 9
- 2c Harmata M, Wacharasindhu S. Synthesis 2007; 23
- 2d Wendeborn S, Nussbaumer H, Schaetzer J, Winkler T. Synlett 2010; 1966
- 2e Grimme W, Bertsch A, Flock H, Noack T, Krauthäuser S. Synlett 1998; 1175
- 2f Slowinski F, Ayad OB, Vache J, Saady M, Leclerc O, Lochead A. Org. Lett. 2010; 12: 5004
- 2g Aubé J, Szostak M. Chem. Rev. 2013; 113: 5701
- 2h Coombs TC, Zhang Y, Garnier-Amblard EC, Liebeskind LS. J. Am. Chem. Soc. 2009; 131: 876
- 2i Takeuchi K, Ohga Y. Bull. Chem. Soc. Jpn. 1996; 69: 833
- 2j Wiberg KB, Lowry BR. J. Am. Chem. Soc. 1963; 85: 3188
- 2k Bartlett PD, Knox LH. J. Am. Chem. Soc. 1939; 61: 3184
- 2l Yates P, Kaldas M. Can. J. Chem. 1992; 70: 1492
- 2m Gohlke RS. J. Am. Chem. Soc. 1968; 90: 2714
- 3a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
- 3b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
- 3c Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
- 3d Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 3e Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 3f Davies HM. L, Du Bois J, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
- 3g Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 3h Wu Y, Wang J, Mao F, Kwong FY. Chem. Asian J. 2014; 9: 26
- 3i Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
- 3j Zhong Y, Loh K. Chem. Asian J. 2010; 5: 1532
- 3k Ren Z, Mo F, Dong G. J. Am. Chem. Soc. 2012; 134: 16991
- 4a Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
- 4b Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
- 4c Godula K, Sames D. Science 2006; 312: 67
- 4d Ackermann L, Vicente R, Born R. Adv. Synth. Catal. 2008; 350: 741
- 4e Ano Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2011; 133: 12984
- 4f Ye X, He Z, Ahmed T, Weise K, Akhmedov NG, Petersen JL, Shi X. Chem. Sci. 2013; 4: 3712
- 4g White CM. Science 2012; 335: 807
- 4h Gutekunst WR, Baran PS. Angew. Chem. Int. Ed. 2012; 51: 7507
- 4i Roman DS, Charette AB. Org. Lett. 2013; 15: 4394
- 4j Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
- 4k Parella R, Gopalakrishnan B, Babu SA. J. Org. Chem. 2013; 78: 11911
- 4l Parella R, Gopalakrishnan B, Babu SA. Org. Lett. 2013; 15: 3238
- 4m Santos AD, El Kaïm L, Grimaud L, Ramozzi R. Synlett 2012; 438
- 4n Odani R, Nishino M, Hirano K, Satoh T, Miura M. Heterocycles 2014; 88: 595
- 4o Christakakou M, Schön M, Schnürch M, Mihovilovic MD. Synlett 2013; 24: 2411
- 4p Rao Y. Synlett 2013; 24: 2472
- 5a He G, Chen G. Angew. Chem. Int. Ed. 2011; 50: 5192
- 5b Zhang S.-Y, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135: 2124
- 5c Sun W.-W, Cao P, Mei R.-Q, Li Y, Ma Y.-L, Wu B. Org. Lett. 2013; 16: 480
- 6a Hoshiya N, Kobayashi T, Arisawa M, Shuto S. Org. Lett. 2013; 15: 6202
- 6b Cao X, Yang W, Liu C, Wei F, Wu K, Sun W, Song J, Xie L, Huang W. Org. Lett. 2013; 15: 3102
- 6c Saget T, Perez D, Cramer N. Org. Lett. 2013; 15: 1354
- 6d Rousseaux S, Liégault B, Fagnou K. Chem. Sci. 2012; 3: 244
- 6e Ladd CL, Roman DS, Charette AB. Org. Lett. 2013; 15: 1350
- 7a Malacria M, Maestri G. J. Org. Chem. 2013; 78: 1323
- 7b The stereochemistry was assigned based on X-ray crystal structures of 4a, 3d, 5d, and 7b and the similarity in the NMR spectral pattern.
- 8 General procedure for the direct C–H arylation of norbornane systems and the preparation of 3a–h, 5a–g, and 7a–h: A solution of bridged bicyclic framework 1a, 1i or 4 (0.25 mmol), Pd(OAc)2 (5.6 mg, 0.025 mmol, 10 mol%), aryl iodide (1 mmol), and Ag2CO3 (68.9 mg, 0.25 mmol) in anhydrous t-BuOH (3 mL) was heated at an appropriate temperature and for an appropriate time (73–85 °C, 24–36 h; see the respective tables or schemes for specific examples) under a nitrogen atmosphere. After the reaction period, the reaction mixture was diluted with EtOAc and concentrated in vacuum. Purification of the resulting reaction mixture by column chromatography (silica gel, 100−200 mesh) furnished the corresponding bisarylated bicyclo[2.2.1]heptane-2-carboxamides.
- 9 Analytical data of 3a: Following the general procedure described above, 3a was obtained after purification by column chromatography on silica gel (EtOAc–hexanes, 30:70). Yield: 70% (78 mg); brown solid; mp 172–174 °C (MeOH–hexanes, 1:1). FTIR (KBr): 3401, 1629, 1521, 1322, 667 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.27 (br s, 1 H), 8.63 (dd, J = 7.2, 1.6 Hz, 1 H), 8.57 (dd, J = 4.2, 1.6 Hz, 1 H), 8.07 (dd, J = 8.2, 1.6 Hz, 1 H), 7.47–7.34 (m, 5 H), 7.18 (d, J = 8.0 Hz, 2 H), 7.09 (d, J = 8.0 Hz, 2 H), 7.01 (d, J = 8.0 Hz, 2 H), 3.88 (dd, J = 11.0, 2.8 Hz, 1 H), 3.57 (dd, J = 11.0, 1.3 Hz, 1 H), 2.90–2.85 (m, 1 H), 2.80 (br s, 1 H), 2.32 (s, 3 H), 2.30–2.26 (m, 2 H), 2.23 (s, 3 H), 1.93 (dd, J = 9.5, 1.6 Hz, 1 H), 1.83–1.77 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 170.3, 147.6, 141.2, 138.2, 137.6, 136.0, 135.7, 134.9, 134.6, 129.0, 128.6, 128.2, 127.7, 127.3, 127.1, 121.3, 120.9, 116.2, 58.0, 56.2, 49.2, 46.5, 41.6, 29.6, 23.9, 21.1, 21.0. HRMS (ESI): m/z [M + H]+ calcd for C31H31N2O: 447.2436; found: 447.2444.
- 10 Analytical data of 3b: Following the general procedure described above, 3b was obtained after purification by column chromatography on silica gel (EtOAc–hexanes, 30:70). Yield: 81% (84 mg); white solid; mp 135–137 °C (MeOH–hexanes, 1:1). FTIR (KBr): 3300, 1668, 1587, 1321, 1021 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.30 (br s, 1 H), 8.63 (dd, J = 7.2, 1.9 Hz, 1 H), 8.56–8.55 (m, 1 H), 8.06 (dd, J = 8.3, 1.8 Hz, 1 H), 7.52–7.49 (m, 1 H), 7.46–7.07 (m, 12 H), 3.92 (dd, J = 13.6, 1.4 Hz, 1 H), 3.63 (dd, J = 13.6, 1.4 Hz, 1 H), 2.92–2.86 (m, 2 H), 2.36–2.31 (m, 2 H), 1.96 (dd, J = 9.4, 1.6 Hz, 1 H), 1.86–1.78 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 170.0, 147.7, 144.1, 140.7, 138.2, 136.0, 134.5, 128.3, 128.1, 127.8, 127.7, 127.3, 127.2, 126.3, 125.6, 121.3, 120.9, 116.1, 58.0, 56.5, 49.5, 46.4, 41.4, 29.6, 23.8. HRMS (ESI): m/z [M + H]+ calcd for C29H27N2O: 419.2123; found: 419.2123.
- 11 The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre: CCDC-982495 (4a), CCDC-982494 (3d), CCDC-982496 (5d), and CCDC-982497 (7b). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
For selected articles, see:
For selected review articles, see:
For selected reviews, see:
For selected articles, see:
For examples on Pd-catalyzed 3° C(sp3)–H activation, see:
For a paper dealing with norbornene-type systems with the palladium catalyst, see: