Subscribe to RSS
DOI: 10.1055/s-0034-1378548
Enantioselective α-Hydroxylation of β-Keto Esters Catalyzed by Cinchona Alkaloid Derivatives
Publication History
Received: 04 June 2014
Accepted after revision: 29 June 2014
Publication Date:
06 August 2014 (online)
Abstract
A highly efficient α-hydroxylation of β-keto esters catalyzed by cupreidine in the presence of cumyl hydroperoxide (CHP) was achieved. The reaction was applied to a wide variety of β-keto esters to give products in high yields (up to 95%) with excellent enantioselectivities (up to 97% ee). The reaction had been successfully scaled up to a gram quantity and (S)-5-chloro-2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate – the important intermediate of Indoxacarb were obtained in 96% yield with 86% ee. The enantiomeric excess could be improved to 99% by crystallization, and this method has prospect of industrial application for its advantages of enantioselectivity, ease of catalyst preparation and reclamation of catalyst.
Key words
cinchona alkaloid - organocatalysis - enantioselectivity - β-keto esters - industrial applicationSupporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1 Christoffers J, Baro A, Werner T. Adv. Synth. Catal. 2004; 346: 143
- 2a Zhu J, Klunder AJ. H, Zwanenburg B. Tetrahedron Lett. 1994; 35: 2787
- 2b Christoffers J, Werner T, Frey W, Baro A. Chem. Eur. J. 2004; 10: 1042
- 3 Wellington KD, Cambie RC, Rutledge PS, Bergquist PR. J. Nat. Prod. 2000; 63: 79
- 4 Olack G, Morrison H. J. Org. Chem. 1991; 56: 4969
- 5 Davis FA, Clark C, Kumar A, Chen BC. J. Org. Chem. 1994; 59: 1184
- 6 Buchi G, Matsumoto KE, Nishimura H. J. Am. Chem. Soc. 1971; 93: 3299
- 7 Chooi Y, Hong YJ, Cacho RA, Tantillo DJ, Tang Y. J. Am. Chem. Soc. 2013; 135: 16805
- 8 Matsuda Y, Awakawa T, Wakimoto T, Abe I. J. Am. Chem. Soc. 2013; 135: 10962
- 9 McCann SF, Annis GD, Shapiro R, Piotrowski DW, Lahm GP, Long JK, Lee KC, Hughes MM, Myers BJ, Griswold SM, Reeves BM, March RW, Sharpe PL, Lowder P, Barnette WE, Wing KD. Pest Manag. Sci. 2001; 57: 153
- 10 Casalnuovo AL. WO 03002255, 2003
- 11 Toullec PY, Bonaccorsi C, Mezzetti A, Togni A. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5810
- 12 Ishimaru T, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S. J. Am. Chem. Soc. 2006; 128: 16488
- 13a Smith AM. R, Billen D, Hii KK. Chem. Commun. 2009; 3925
- 13b Smith AM, Rzepa HS, White AJ, Billen D, Hii KK. J. Org. Chem. 2010; 75: 3085
- 14 Li J, Cheng G, Wang Z, Zhang RZ, Zhang XM, Ding KL. Chem. Sci. 2011; 2: 1141
- 15 Jiang JJ, Wang D, Zhao MX, Shi M. Tetrahedron: Asymmetry 2010; 21: 794
- 16 Yin CK, Cao WD, Lin LL, Liu XH, Feng XM. Adv. Synth. Catal. 2013; 355: 1924
- 17 MacMillan DW. C. Nature (London, U.K.) 2008; 455: 304
- 18 Lu M, Zhu D, Lu YP, Zeng XF, Tan B, Xu ZJ, Zhong GF. J. Am. Chem. Soc. 2009; 131: 4562
- 19a Gong B, Meng QW, Su T, Lian MM, Wang Q, Gao ZX. Synlett 2009; 2659
- 19b Cai YC, Lian MM, Li Z, Meng QW. Tetrahedron 2012; 38: 7973
- 20a Lian MM, Li Z, Meng QW, Gao ZX. Eur. J. Org. Chem. 2010; 34: 6525
- 20b Yao HJ, Lian MM, Li Z, Wang YK, Meng QW. J. Org. Chem. 2012; 77: 9601
- 20c Lian MM, Li Z, Cai YC, Meng QW, Gao ZX. Chem Asian J. 2012; 7: 2019
- 21a Zou L, Wang B, Mu H, Zhang H, Song Y, Qu J. Org. Lett. 2013; 15: 3106
- 21b Minami O, Kota F, Tatsuya W, Nagazawa K. Chem. Eur. J. 2013; 19: 16740
- 22 Taylor EG. WO 03040083, 2003
- 23 Acocella MR, Mancheno OG, Bella M, Jørgensen KA. J. Org. Chem. 2004; 69: 8165
- 24 Marcelli T, Maarseveen JH. V, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 7496
- 25 Li H, Wang Y, Tang L, Deng L. J. Am. Chem. Soc. 2004; 126: 9906
- 26a Xiao X, Xi Y, Su C, Liu M, Shi Y. J. Am. Chem. Soc. 2011; 133: 12914
- 26b Wu FH, Li HM, Hong R, Deng L. Angew. Chem. Int. Ed. 2006; 45: 947
- 26c He P, Liu X, Shi J, Lin L, Feng X. Org. Lett. 2011; 13: 936
- 26d Wu F, Hong R, Khan J, Liu X, Deng L. Angew. Chem. Int. Ed. 2006; 45: 4301
- 26e Wang Y, Liu X, Deng L. J. Am. Chem. Soc. 2006; 128: 3928
- 26f Rigby CL, Dixon DJ. Chem. Commun. 2008; 32: 3798
- 27 Typical Experimental Procedure (Table 3, Entry 2) β-Keto ester 1b (28.0 mg, 0.125 mmol) and catalyst CPD (7.8 mg, 0.025 mmol, 20 mol%) were added to a test tube equipped with a stirring bar and dissolved in CHCl3 (1 mL). Cumyl hydroperoxide (0.250 mmol in CHCl3 solution (2 equiv, 1 mL) was added. The mixture was stirred at –20 °C for 48 h. The reaction was monitored by TLC, and the solvent was removed under reduced pressure at the completion of the reaction. The residue was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (elution gradient: PE–EtOAc, 13:1–5:1) to afford 3b as white solid (28.5 mg, 95% yield, 83% ee); [α]D 20 +85.73 (c 0.1, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.74 (d, J = 8.2 Hz, 1 H), 7.50 (s, 1 H), 7.42 (d, J = 8.2 Hz, 1 H), 4.02 (s, 1 H), 3.75 (s, 3 H), 3.70 (d, J = 17.5 Hz, 1 H), 3.24 (d, J = 17.5 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 199.40, 171.54, 153.54, 142.89, 131.99, 129.09, 126.77, 126.40, 80.43, 53.63, 38.95. HRMS (ES+): m/z calcd for C11H9ClO4 + H+: 241.0233; found: 241.0215. HPLC conditions (Chiralcel OD-H, hexane–i-PrOH, 90:10): 1 mL/min, 254 nm, t R (major) = 14.8 min, t R (minor) = 19.2 min.