Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(17): 2434-2437
DOI: 10.1055/s-0034-1379181
DOI: 10.1055/s-0034-1379181
letter
Diastereoselective Oxidative Cross-Coupling Reactions of Chiral Alkylbenzenes with Arenes and Silyl Nucleophiles
Further Information
Publication History
Received: 27 August 2014
Accepted: 28 August 2014
Publication Date:
18 September 2014 (online)
Abstract
Chiral di- and trimethoxysubstituted alkylbenzenes underwent oxidative cross-dehydrogenative coupling reactions with arenes and related oxidative coupling reactions with silyl nucleophiles in moderate to good yields (41–99%) and with significant diastereoselectivities (dr = 71:29 to >95:5).
Key words
carbocation - diastereoselectivity - electrophilic aromatic substitution - oxidation - stereoselective synthesisSupporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083. Included are procedures and analytical data for all new compounds and crystal structure data.
- Supporting Information
-
References and Notes
- 1a Klussmann M, Sureshkumar D. Synthesis 2011; 353
- 1b Rohlmann R, Garcia Mancheño O. Synlett 2013; 24: 6
- 1c Dastbaravardeh N, Christakakou M, Haider M, Schnürch M. Synthesis 2014; 46: 1421
- 2 Review: Samanta R, Matcha K, Antonchick AP. Eur. J. Org. Chem. 2013; 5769
- 3a Scheuermann CJ. Chem. Asian J. 2010; 5: 436
- 3b Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 3c Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 4a Xu Y.-C, Roy C, Lebeau E. Tetrahedron Lett. 1993; 34: 8189
- 4b Xie Y, Yu M, Zhang Y. Synthesis 2011; 2803
- 4c Ying B.-P, Trogden BG, Kohlman DT, Liang SX, Xu Y.-C. Org. Lett. 2004; 6: 1523
- 4d Zhang Y, Li C.-J. Angew. Chem. Int. Ed. 2006; 45: 1949
- 4e Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
- 4f Tu W, Floreancig PE. Angew. Chem. Int. Ed. 2009; 48: 4567
- 4g Richter H, Garcia Mancheño O. Eur. J. Org. Chem. 2010; 4460
- 4h Liu L, Floreancig PE. Angew. Chem. Int. Ed. 2010; 49: 5894
- 4i Clausen DJ, Floreancig PE. J. Org. Chem. 2012; 77: 6574
- 4j Meng Z, Sun S, Yuan H, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 543
- 5a Li Z, Li C.-J. Org. Lett. 2004; 6: 4997
- 5b Dubs C, Hamashima Y, Sasamoto N, Seidel TM, Suzuki S, Hashizume D, Sodeoka M. J. Org. Chem. 2008; 73: 5859
- 5c Sud A, Sureshkumar D, Klussmann M. Chem. Commun. 2009; 3169
- 5d Huang L, Zhang X, Zhang Y. Org. Lett. 2009; 11: 3730
- 5e Kumaraswamy G, Muthy AN, Pitchaiah A. J. Org. Chem. 2010; 75: 3916
- 5f Jones KM, Klussmann M. Synlett 2012; 23: 159
- 5g Zhang J, Tiwari B, Xing C, Chen X, Chi YR. Angew. Chem. Int. Ed. 2012; 51: 3649
- 5h Alagiri K, Devadig P, Prabhu KR. Chem. Eur. J. 2012; 18: 5160
- 5i Richter H, Fröhlich R, Daniliuc C.-G, Garcia Mancheño O. Angew. Chem. Int. Ed. 2012; 51: 8656
- 5j Nobuta T, Tada N, Fujiya A, Kariya A, Miura T. Org. Lett. 2013; 15: 574
- 5k Zhang G, Ma Y, Wang S, Kong W, Wang R. Chem. Sci. 2013; 4: 2645
- 6a Kolodziej H, Ferreira D, Roux DG. J. Chem. Soc., Perkin Trans. 1 1984; 343
- 6b Nishino H, Kamachi H, Baba H, Kurosawa K. J. Org. Chem. 1992; 57: 3551
- 6c Ohmori K, Ushimaru N, Suzuki K. Tetrahedron Lett. 2002; 43: 7753
- 6d Selenski C, Pettus TR. R. Tetrahedron 2006; 62: 5298
- 6e Mo H, Bao W. Adv. Synth. Catal. 2009; 351: 2845
- 6f Li Y.-Z, Li B.-J, Lu X.-Y, Lin S, Shi Z.-J. Angew. Chem. Int. Ed. 2009; 48: 3817
- 6g Benfatti F, Capdevila MG, Zoli L, Benedetto E, Cozzi PG. Chem. Commun. 2009; 5919
- 6h Pintér Á, Sud A, Sureshkumar D, Klussmann M. Angew. Chem. Int. Ed. 2010; 49: 5004
- 6i Guo C, Song J, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2010; 49: 5558
- 7 For examples of enantioselective approaches in CDC reactions, see ref. 4j for onium ion intermediates, refs. 5a–c,g,k for iminium ion intermediates and refs. 6g,i for benzylic cations.
- 8a Mühlthau F, Schuster O, Bach T. J. Am. Chem. Soc. 2005; 127: 9348
- 8b Mühlthau F, Stadler D, Goeppert A, Olah GA, Prakash GK. S, Bach T. J. Am. Chem. Soc. 2006; 128: 9668
- 8c Stadler D, Bach T. Chem. Asian J. 2008; 3: 272
- 8d Stadler D, Goeppert A, Rasul G, Olah GA, Prakash GK. S, Bach T. J. Org. Chem. 2009; 74: 312
- 9a Herrmann P, Bach T. Chem. Soc. Rev. 2011; 40: 2022
- 9b Nörder A, Warren SE, Herdtweck E, Huber SM, Bach T. J. Am. Chem. Soc. 2012; 134: 13524
- 10 For the preparation of starting materials, see the Supporting Informaton. All chiral compounds in this manuscript were used or obtained as racemic mixtures. The relative configuration of racemates is displayed by straight bonds (bold or hashed), following a convention suggested previously: Maehr H. J. Chem. Ed. 1985; 62: 114
- 11a Qin C, Jiao N. J. Am. Chem. Soc. 2010; 132: 15893
- 11b Qin C, Zhou W, Chen F, Ou Y, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 12595
- 11c Wang T, Zhou W, Yin H, Ma J.-A, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 10823
- 12 General Experimental Procedure for FeCl2-Catalyzed, DDQ-Mediated Cross-Coupling Reactions To a solution of the substrate 3 (200 μmol, 1.00 equiv), nucleophile (800 μmol, 4.00 equiv), FeCl2 (40 μmol, 0.20 equiv), and MeNO2 (c 100 mM) in a flame-dried flask was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (260 μmol, 1.30 equiv) at r.t. After 1 h the solvent was removed under reduced pressure, and the crude mixture was purified by flash column chromatography (silica gel; pentane–EtOAc, 40:1) to afford the product.
- 13 General Experimental Procedure for DDQ-Mediated Cross-Coupling Reactions To a solution of the substrate 5 (200 μmol, 1.00 equiv), nucleophile (800 μmol, 4.00 equiv), and MeNO2 (c 100 mM) in a flame-dried flask was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (260 μmol, 1.30 equiv) at r.t. After 1 h the solvent was removed under reduced pressure, and the crude mixture was purified by flash column chromatography (silica gel; pentane–EtOAc, 40:1) to afford the product.
- 14 Crystal Structure of 6f Colorless plates, C24H34O5, crystal dimensions 0.12 × 0.13 × 0.13 mm; M r = 402.51; monoclinic, space group P 21/n, a = 13.558(3), b = 11.365(2), c = 15.410(3) Å, β = 112.740(6)°, V = 2189.9(7) Å3, Z = 4, λ(Mo Kα) = 0.71073 Å, μ = 0.084 mm–1, ρ calcd = 1.221 g cm–3, T = 123(2) K, F (000) = 872, angle range θ = 1.70–23.26°; collected data: 16558; independent data [I o > 2σ(I o)/all data/R int]: 1913/3089/0.1067; data/restraints/parameter: 3089/0/272; R1 [I o > 2σ(I o)/all data]: 0.0816/0.1330; wR2 [I o > 2σ(I o)/ all data]: 0.1855/0.2073; GOF = 1.049; Δρ max/min: 0.861/–0.271 eÅ–3. CCDC-1016616. For more details, see the Supporting Information.
- 15a Foster R, Horman I. J. Chem. Soc. B 1966; 1049
- 15b Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
- 15c Becker H.-D. J. Org. Chem. 1969; 34: 1203
- 15d Cardillo G, Cricchio R, Merlini L. Tetrahedron 1971; 27: 1875
- 17a Chung JY. L, Mancheno D, Dormer PG, Variankaval N, Ball RG, Tsou NN. Org. Lett. 2008; 10: 3037
- 17b Stadler D, Bach T. Angew. Chem. Int. Ed. 2008; 47: 7557
- 17c Zhang Z, Shi M. Chem. Eur. J. 2010; 16: 7725
- 17d Wilcke D, Herdtweck E, Bach T. Chem. Asian J. 2012; 7: 1372
- 17e Corbett MT, Uraguchi D, Ooi T, Johnson JS. Angew. Chem. Int. Ed. 2012; 51: 4685
- 17f Wilcke D, Bach T. Org. Biomol. Chem. 2012; 10: 6498
- 17g Chenárd E, Hanessian S. Org. Lett. 2014; 16: 2668
Reviews:
Reviews:
Selected examples:
Selected examples:
Selected examples:
For additional examples for FeCl2-catalyzed benzylic DDQ oxidation, see refs. 4b,6f and:
For mechanistic studies towards the benzylic DDQ oxidation, see: