Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(16): 2341-2344
DOI: 10.1055/s-0034-1379213
DOI: 10.1055/s-0034-1379213
letter
A Highly Efficient Synthesis of 2,5-Disubstituted Furans from Enyne Acetates Catalyzed by Lewis Acid and Palladium
Further Information
Publication History
Received: 02 June 2014
Accepted after revision: 11 July 2014
Publication Date:
08 September 2014 (online)
Abstract
A highly efficient synthesis of a wide range of 2,5-disubstituted furans from enyne acetates is described. The reactions are conducted by using Lewis acid and palladium catalyst and provide symmetrical and unsymmetrical products in good to excellent yields, with broad substrate scope, including a variety of aromatic and aliphatic substituents in the 2- and 5-position of the furan ring.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HN. C. Tetrahedron 1998; 54: 1955
- 1b Donohoe TJ, Ironmonger A, Kershaw NM. Angew. Chem. Int. Ed. 2008; 47: 7314
- 1c Kirsch SF. Org. Biomol. Chem. 2006; 4: 2076
- 2a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 2b Brown RC. D. Angew. Chem. Int. Ed. 2005; 44: 850
- 2c Keay BA. Chem. Soc. Rev. 1999; 28: 209
- 2d Jeevanandam A, Ghule A, Ling YC. Curr. Org. Chem. 2002; 6: 841
- 3 For the Paal–Knorr synthesis, see: Minetto G, Raveglia LF, Sega A, Taddei M. Eur. J. Org. Chem. 2005; 5277 ; and references cited therein
- 4a Dudnik AS, Sromek AW, Rubina M, Kim JT, Kel’in AV, Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 1440
- 4b Yao T, Zhang X, Larock RC. J. Am. Chem. Soc. 2004; 126: 11164
- 4c Sniady A, Durham A, Morreale MS, Wheeler KA, Dembinski R. Org. Lett. 2007; 9: 1175
- 4d Xiao Y, Zhang J. Angew. Chem. Int. Ed. 2008; 47: 1903
- 4e Sromek AW, Kel’in AV, Gevorgyan V. Angew. Chem. Int. Ed. 2004; 43: 2280
- 4f Umland K.-D, Palisse A, Haug TT, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 9965
- 4g Zhang J, Schmalz H.-G. Angew. Chem. Int. Ed. 2006; 45: 6704
- 4h Liu F, Qian D, Li L, Zhao X, Zhang J. Angew. Chem. Int. Ed. 2010; 49: 6669
- 4i Liu R, Zhang J. Chem. Asian J. 2012; 7: 294
- 4j Gao H, Wu X, Zhang J. Chem. Eur. J. 2011; 17: 2838
- 5a Schwier T, Sromek AW, Yap DM. L, Chernyak D, Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 9868
- 5b Dudnik AS, Xia Y, Li Y, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 7645
- 5c Sromek AW, Rubina M, Gevorgyan V. J. Am. Chem. Soc. 2005; 127: 10500
- 5d Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 5195
- 5e Li Y, Brand JP, Waser J. Angew. Chem. Int. Ed. 2013; 52: 6743
- 5f Peng L, Zhang X, Ma M, Wang J. Angew. Chem. Int. Ed. 2007; 46: 1905
- 5g Ma S, Yu Z. Angew. Chem. Int. Ed. 2002; 41: 1775
- 6a Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 6b Ma S, Zhang J. J. Am. Chem. Soc. 2003; 125: 12386
- 7a Ma S, Lu L, Zhang J. J. Am. Chem. Soc. 2004; 126: 9645
- 7b Zhang G, Huang X, Li G, Zhang L. J. Am. Chem. Soc. 2008; 130: 1814
- 7c Ma S, Zhang J. Angew. Chem. Int. Ed. 2003; 42: 183
- 8a Nishibayashi Y, Yoshikawa M, Inada Y, Milton MD, Hidai M, Uemura S. Angew. Chem. Int. Ed. 2003; 42: 2681
- 8b Lenden P, Entwistle DA, Willis MC. Angew. Chem. Int. Ed. 2011; 50: 10657
- 8c Gabriele B, Mancuso R, Maltese V, Veltri L, Salerno G. J. Org. Chem. 2012; 77: 8657
- 8d Gabriele B, Veltri L, Plastina P, Mancuso R, Vetere MV, Maltese V. J. Org. Chem. 2013; 78: 4919
- 8e Gabriele B, Salerno G, Lauria E. J. Org. Chem. 1999; 64: 7687
- 8f Wang T, Chen X, Chen L, Zhan Z. Org. Lett. 2011; 13: 3324
- 9a Shu X.-Z, Liu X.-Y, Xiao H.-Q, Ji K.-G, Guo L.-N, Qi C.-Z, Liang Y.-M. Adv. Synth. Catal. 2007; 349: 2493
- 9b Blanc A, Tenbrink K, Wiebel J.-M, Pale P. J. Org. Chem. 2009; 74: 4360
- 9c Hashmi AS. K, Sinha P. Adv. Synth. Catal. 2004; 346: 432
- 10a Suhre MH, Reif M, Kirsch SF. Org. Lett. 2005; 7: 3925
- 10b Tejedor D, Cotos L, García-Tellado F. Org. Lett. 2011; 13: 4422
- 10c Cao H, Jiang H, Yao W, Liu X. Org. Lett. 2009; 11: 1931
- 10d Cao H, Jiang H, Mai R, Zhu S, Qi C. Adv. Synth. Catal. 2010; 352: 143
- 10e Cao H, Jiang H, Yuan G, Chen Z, Qi C, Huang H. Chem. Eur. J. 2010; 16: 10553
- 10f Jiang H, Yao W, Cao H, Huang H, Cao D. J. Org. Chem. 2010; 75: 5347
- 11a Clark JS, Boyer A, Aimon A, Gurcía PE, Lindsay DM, Symington AD. F, Danoy Y. Angew. Chem. Int. Ed. 2012; 51: 12128
- 11b González J, González J, Pérez-Calleja C, López LA, Vicente R. Angew. Chem. Int. Ed. 2013; 52: 5853
- 11c Vicente R, González J, Riesgo L, González J, Lopez LA. Angew. Chem. Int. Ed. 2012; 51: 8063
- 11d Cao H, Zhan H, Cen J, Lin J, Lin Y, Zhu Q, Fu M, Jiang H. Org. Lett. 2013; 15: 1080
- 12a Jiang H, Zeng W, Li Y, Wu W, Huang L, Fu W. J. Org. Chem. 2012; 77: 5179
- 12b Num P, Dupuy S, Gaillard S, Poater A, Cavallo L, Nolan SP. Catal. Sci. Technol. 2011; 1: 58
- 12c Zheng Q, Hua R, Yin T. Curr. Org. Synth. 2013; 10: 161
- 12d Wang Y.-H, Liu H, Zhu L.-L, Li X.-X, Chen Z. Adv. Synth. Catal. 2011; 353: 707
- 12e Kramer S, Madsen JL. H, Rottländer M, Skrydstrup T. Org. Lett. 2010; 12: 2758
- 13a Cui X, Xu X, Wojtas L, Kim MM, Zhang XP. J. Am. Chem. Soc. 2012; 134: 19981
- 13b He C, Guo S, Ke J, Hao J, Xu H, Chen H, Lei A. J. Am. Chem. Soc. 2012; 134: 5766
- 13c Yeh M.-CP, Lin M.-N, Hsu C.-H, Liang C.-J. J. Org. Chem. 2013; 78: 12381
- 13d Okamoto N, Yanada R. J. Org. Chem. 2012; 77: 3944
- 13e Yang Y, Yao J, Zhang Y. Org. Lett. 2013; 15: 3206
- 13f Li J, Liu L, Ding D, Sun J, Ji Y, Dong J. Org. Lett. 2013; 15: 2884
- 13g Butkevich AN, Meerpoel L, Stansfield I, Angibaud P, Corbu A, Cossy J. Org. Lett. 2013; 15: 3840
- 13h Jiang H, Cheng Y, Zhang Y, Yu S. Org. Lett. 2013; 15: 4884
- 13i Zheng M, Huang L, Wu W, Jiang H. Org. Lett. 2013; 15: 1838
- 13j Zheng X, Lu S, Li Z. Org. Lett. 2013; 15: 5432
- 13k Kramer S, Skrydstrup T. Angew. Chem. Int. Ed. 2012; 51: 4681
- 13l Huang X, Peng B, Luparia M, Gomes LF. R, Veiros LF, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 8886
- 14 Schmidt B, Geißler D. Eur. J. Org. Chem. 2011; 4814 ; and references cited therein
- 15a Zhang M, Jiang H.-F, Neumann H, Beller M, Dixneuf PH. Angew. Chem. Int. Ed. 2009; 48: 1681
- 15b Dheur J, Sauthier M, Castanet Y, Mortreux A. Adv. Synth. Catal. 2010; 352: 557
- 15c Chang S, Desai S, Leznoff DB, Merbouh N, Britton R. Eur. J. Org. Chem. 2013; 3219
- 15d Pridmore SJ, Slatford PA, Williams JM. J. Tetrahedron Lett. 2007; 48: 5111
- 15e Kel’in AV, Gevorgyan V. J. Org. Chem. 2002; 67: 95
- 15f Donohoe TJ, Fishlock LP, Lacy AR, Procopiou PA. Org. Lett. 2007; 9: 953
- 16a Chen Z, Li J, Jiang H, Zhu S, Li Y, Qi C. Org. Lett. 2010; 12: 3262
- 16b Chen Z, Huang G, Jiang H, Huang H, Pan X. J. Org. Chem. 2011; 76: 1134
- 17 Fukuda Y, Shiragami H, Utimoto K, Nozaki H. J. Org. Chem. 1991; 56: 5816
- 18 Preparation of 2,5-Disubstituted Furans from Enyne Acetates; Typical Procedure: To a mixture of (Z)-1,4-diphenylbut-1-en-3-yn-1-yl acetate (1a; 0.25 mmol) and MeNO2 (1.0 mL), Pd(OAc)2 (5 mol%), BF3·OEt2 (30 mol%), and H2O (1 equiv) were added. The mixture was stirred at 80 °C for 10 h, then H2O (10 mL) was added and the solution was extracted with EtOAc (3 × 8 mL). The combined extract was dried with anhydrous MgSO4, the solvent was removed, and the residue was separated by column chromatography (petroleum ether–EtOAc, 30:1) to give the desired product 2a.
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see:
For selected recent examples, see: