Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(08): 1163-1169
DOI: 10.1055/s-0034-1379962
DOI: 10.1055/s-0034-1379962
paper
Modulation of the Electronic Properties of Non-innocent (E,E)-Dibenzylideneacetone for Palladium(0)-Mediated Heck Alkenylation of 5-Iodo-2′-deoxyuridine and Scale-Up Studies
Further Information
Publication History
Received: 24 September 2014
Accepted after revision: 08 December 2014
Publication Date:
10 February 2015 (online)
Dedicated to Professor Richard K. Taylor on his 65th birthday
Abstract
Subtle modulation of the electronic properties of the dibenzylideneacetone (dba) ligand allows the development of an efficient protocol for the Heck alkenylation of 5-iodo-2′-deoxyuridine. This protocol enables the large-scale synthesis of commercially important nucleoside building blocks. The isolation of one key molecule was accomplished under column-free conditions on a 10-gram scale.
Key words
Heck alkenylation - dibenzylideneacetone - scale-up - nucleosides - 5-iodo-2′-deoxyuridineSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379962.
- Supporting Information
-
References
- 1a Suzuki A In Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. VCH; Weinheim: 1998: 49
- 1b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1c Suzuki A. J. Organomet. Chem. 1999; 576: 147
- 1d Zapf A In Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals . Vol I. Beller M, Bolm C. Wiley-VCH; Weinheim: 2004: 211
- 2a Stille JK. Angew. Chem., Int. Ed. Engl. 1986; 25: 508
- 2b Farina V, Krishnamurthy V, Scott WJ. Org. React. 1997; 50: 1
- 3a Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
- 3b Tykwinski RR. Angew. Chem. Int. Ed. 2003; 42: 1566
- 3c Sonogashira K. J. Organomet. Chem. 2002; 653: 46
- 4a Hartwig JF. Acc. Chem. Res. 1998; 31: 852
- 4b Hartwig JF In Organopalladium Chemistry for Organic Synthesis . Vol I. Negishi E. Wiley-Interscience; New York: 2002: 1051
- 4c Yang BH, Buchwald SL. J. Organomet. Chem. 1999; 576: 125
- 5a Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
- 5b Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
- 5c Heck RF, Nolley JP. J. Org. Chem. 1972; 37: 2320
- 6 Takahashi Y, Ito T, Ishii Y. J. Chem. Soc., Chem. Commun. 1970; 1065
- 7 Ukai R, Kawazura H, Ishii Y, Bonnet JJ, Ibers JA. J. Organomet. Chem. 1974; 65: 253
- 8a Fiaud JC, De Gournay AH, Larcheveque M, Kagan HB. J. Organomet. Chem. 1978; 154: 175
- 8b Fiaud JC, Malleron JL. Tetrahedron Lett. 1980; 21: 4437
- 8c Fiaud JC, Malleron JL. J. Chem. Soc., Chem. Commun. 1981; 1159
- 8d Julia M, Nel M, Righini M, Ugen D. J. Organomet. Chem. 1982; 235: 113
- 8e Rajanbabu TV. J. Org. Chem. 1985; 50: 3642
- 8f Genet JP, Ferroud D, Juge S, Montes JR. Tetrahedron Lett. 1986; 27: 4573
- 9a Inoue Y, Hibi T, Satake M, Hashimoto H. J. Chem. Soc., Chem. Commun. 1979; 982
- 9b Balaboine G, Eskenazi C, Guillemont M. J. Chem. Soc., Chem. Commun. 1979; 1109
- 9c Binger P, Schuchardt U. Chem. Ber. 1980; 113: 3033
- 9d Russell CE, Hegedus LS. J. Am. Chem. Soc. 1983; 105: 943
- 10a Fairlamb IJ. S, Kapdi AR, Lee AF. Org. Lett. 2004; 6: 4435
- 10b Mace Y, Kapdi AR, Fairlamb IJ. S, Jutand A. Organometallics 2006; 25: 1795
- 10c Fairlamb IJ. S, Kapdi AR, Lee AF, McGlacken GP, Weissburger F, de Vries AH. M, Schmieder-van de Vondervoort L. Chem. Eur. J. 2006; 12: 8750
- 10d Fairlamb IJ. S, Lee AF. Organometallics 2007; 26: 4087
- 10e Fairlamb IJ. S. Org. Biomol. Chem. 2008; 6: 3645
- 11 Kapdi AR, Whitwood AC, Williamson DC, Lynam JM, Burns MJ, Williams TJ, Reay AJ, Holmes J, Fairlamb IJ. S. J. Am. Chem. Soc. 2013; 135: 8388
- 12a Amatore C, Jutand A. Acc. Chem. Res. 2000; 33: 314
- 12b Amatore C, Jutand A. J. Organomet. Chem. 1999; 576: 254
- 12c Amatore C, Azzabi M, Jutand A. J. Organomet. Chem. 1989; 363: C41
- 12d Fauvarque JF, Jutand A. Bull. Soc. Chim. Fr. 1976; 765
- 12e Amatore C, Jutand A, Bakri M. Organometallics 1992; 11: 3009
- 12f Amatore C, Jutand A, Khalil F, M’Barki MA, Mottier L. Organometallics 1993; 12: 3168
- 12g Amatore C, Broeker G, Jutand A, Khalil F. J. Am. Chem. Soc. 1997; 119: 5176
- 12h Amatore C, Jutand A. Coord. Chem. Rev. 1998; 178–180: 511
- 13 Jarvis AG, Sehnal PE, Bajwa SE, Whitwood AC, Zhang X, Cheung MS, Lin Z, Fairlamb IJ. S. Chem. Eur. J. 2013; 19: 6034
- 14 Sehnal P, Taghzouti H, Fairlamb IJ. S, Jutand A, Lee AF, Whitwood AC. Organometallics 2009; 28: 824
- 15 Firmansjah L, Fu GC. J. Am. Chem. Soc. 2007; 129: 11340
- 16 Storr TE, Firth AG, Wilson K, Darley K, Baumann CG, Fairlamb IJ. S. Tetrahedron 2008; 64: 6125
- 17a Wojtowicz-Rajchel H, Koroniak H. J. Fluorine Chem. 2012; 135: 225
- 17b Suryanarayana ChV, Anuradha V, Jayalakshmi G, Sandhya Rani G. J. Nat. Sci. Res. 2013; 3: 123
- 17c Vongsutilers V, Daft JR, Shaughnessy KH, Gannett PM. Molecules 2009; 14: 3339
- 17d Herve G, Sartori G, Enderlin G, Mackennzie G, Len C. RSC Adv. 2014; 4: 18558
- 17e For a comprehensive review on this topic, see: Fairlamb IJ. S, De Ornellas S, Williams TJ, Baumann CG. Catalytic C–H/C–X Bond Functionalisation of Nucleosides, Nucleotides, Nucleic Acids, Amino Acids, Peptides and Proteins. In C–H and C–C Bond Functionalisation: Transition Metal Mediation. Vol. 11. Ribas S. RSC; Cambridge: 2013. Chap. 12, 409-447
- 18a Greco NJ, Tor Y. J. Am. Chem. Soc. 2005; 127: 1078
- 18b Wigerinck P, Kerremans L, Claes P, Snoeck R, Maudgal P, De Clercq E, Herdewijn P. J. Med. Chem. 1993; 36: 538
- 18c Mayer E, Valis L, Huber R, Amann N, Wagenknecht H.-A. Synthesis 2003; 2335
- 19a Gallagher-Duval S, Herve G, Sartori G, Enderlin G, Len C. New J. Chem. 2013; 37: 1989
- 19b Fresneau N, Hiebel MA, Agrofoglio LA, Berteina-Raboin S. Molecules 2012; 17: 14409
- 19c Ahmadian M, Klewer DA, Bergstrom DE. Current Protocols in Nucleic Acid Chemistry . John Wiley; Hoboken: 2000. Chap. 1.1.1-1.1.18
- 19d Sartori G, Enderlin G, Herve G, Len C. Synthesis 2012; 44: 767
- 19e Sartori G, Herve G, Enderlin G, Len C. Synthesis 2013; 45: 330
- 20 Lyttle MH, Walton TA, Dick DJ, Carter TG, Beckman JH, Cook RM. Bioconjugate Chem. 2002; 13: 1146
- 21a Brulikova L, Hlavac J. Beilstein J. Org. Chem. 2011; 7: 678
- 21b Aucagne V, Berteina-Raboin S, Guenot P, Agrofoglio LA. J. Comb. Chem. 2004; 6: 717
- 22a de Vries AH. M, Mulders JM. C. A, Mommers JM. H, Henderickx HJ. W, de Vries JG. Org. Lett. 2003; 5: 3285
- 22b Coelho V, de Souza AL. F, de Lima PG, Wardell JL, Antunes OA. C. Tetrahedron Lett. 2007; 48: 7671
- 22c Jeffery T. J. Chem. Soc., Chem. Commun. 1984; 1287
- 22d Garg NK, Woodroofe CC, Lacenere CJ, Quake SR, Stoltz BM. Chem. Commun. 2005; 4551
- 22e Reetz MT, de Vries JG. Chem. Commun. 2004; 1559
- 22f Ding H, Greenberg MM. J. Am. Chem. Soc. 2007; 129: 772
- 22g Cho JH, Shaughnessy KH. Synlett 2011; 2963
- 23 Ciurea A, Fossey C, Benzaria S, Gavriliu D, Delbederi Z, Lelong B, Laduree D, Aubertin AM, Kirn A. Nucleosides, Nucleotides Nucleic Acids 2001; 20: 1655
- 24 Dalvi S. Ind. Eng. Chem. Res. 2009; 48: 7581
- 25 Beck C, Dave R. Chem. Eng. Sci. 2010; 65: 5669
- 26 Dadova J, Vidlakova P, Pohl R, Havran L, Fojta M, Hocek M. J. Org. Chem. 2013; 78: 9627
- 27 Sakthivel K, Barbas III CF. Angew. Chem. Int. Ed. 1998; 37: 2872
- 28 Herve G, Len C. RSC Adv. 2014; 4: 46926
Employment of bidentate ligands in combination with [Pd2(dba-4,4′-H)3], see:
Use of monodentate ligands in combination with [Pd2(dba-4,4′-H)3], see:
Heck alkenylation with 5-iodo-2′-deoxyuridine, see:
The phrase ‘ligand-free’ is used when no additional ligand, such as a phosphine, is added to the reaction; see: