Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(08): 1059-1062
DOI: 10.1055/s-0034-1380403
DOI: 10.1055/s-0034-1380403
letter
Zinc and Trimethylsilyl Chloride Mediated Synthesis of 2,3,5-Trisubstituted Pyrrole Diesters from Nitriles and Ethyl Bromoacetate
Further Information
Publication History
Received: 27 December 2014
Accepted after revision: 27 January 2015
Publication Date:
27 February 2015 (online)
Abstract
An efficient, zinc-mediated, single-pot and CN+3C type pseudo-four-component synthesis of 2,3,5-trisubstituted pyrrole diesters was achieved from readily available aromatic/benzylic/aliphatic nitriles and ethyl bromoacetate under trimethylsilyl chloride catalysis.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380403.
- Supporting Information
-
References and Notes
- 1a Jones RA, Bean GP. The Chemistry of Pyrroles . Academic Press; London: 1977: 1-5
- 1b Sundberg RJ In Comprehensive Heterocyclic Chemistry . Vol. 4. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 313-376
- 1c Sundberg RJ In Comprehensive Heterocyclic Chemistry II . Katritzky AR, Rees CW. Pergamon; Oxford: 1996
- 1d Bergman J, Janosik T In Comprehensive Heterocyclic Chemistry III . Vol. 3. Katritzky AR, Ramsden CA, Scriven EF, Taylor RJ. K. Pergamon Press; Oxford: 2008: 269-351
- 1e Dipakranjan M, Brateen S, Bidyut KD. Pyrrole and its Derivatives . In Heterocycles in Natural Product Synthesis . Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011: 187-220
- 1f Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
- 2a Milgrom LR. The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds. Oxford University Press; Oxford: 1997
- 2b Chemistry of Heterocyclic Compounds: Pyrroles Part I and II. Jones RA. John Wiley & Sons; New York: 1992
- 2c Hou XL, Yang Z, Wong HN. C. Progress in Heterocyclic Chemistry . Vol. 15. Gribble GW, Gilcrist TL. Pergamon; Oxford: 2003: 167
- 3a Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
- 3b Fuerstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
- 3c Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
- 3d Lipkus AH, Yuan Q, Lucas KA, Funk SA, Bartelt WF. III, Schenck RJ, Trippe AJ. J. Org. Chem. 2008; 73: 4443
- 3e Fan H, Peng J, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264
- 4a Electronic Materials: The Oligomer Approach . Müllen K, Wegner G. Wiley-VCH; Weinheim: 1998
- 4b Gale PA. Acc. Chem. Res. 2006; 39: 465
- 4c Novak P, Müller K, Santhanam KS. V, Haas O. Chem. Rev. 1997; 97: 207
- 4d Curran D, Grimshaw J, Perera SD. Chem. Soc. Rev. 1991; 20: 391
- 4e Blangy V, Heiss C, Khlebnikov V, Letondor C, Evans HS, Neier R. Angew. Chem. Int. Ed. 2009; 48: 1688
- 4f Wu D, Descalzo AB, Weik F, Emmerling F, Shen Z, You XZ, Rurack K. Angew. Chem. Int. Ed. 2007; 47: 193
- 4g Chen Y, Zeng D, Xie N, Dang Y. J. Org. Chem. 2005; 70: 5001
- 5a Higgins SJ. Chem. Soc. Rev. 1997; 26: 247
- 5b Novak P, Müller K, Santhanam SV, Hass O. Chem. Rev. 1997; 97: 207
- 5c Curran D, Grimshaw J, Perera SD. Chem. Soc. Rev. 1991; 20: 391
- 6a Jones RA. Pyrroles, Part II . Wiley; New York: 1992
- 6b Balme G. Angew. Chem. Int. Ed. 2004; 43: 6238
- 7 Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 1635
- 8 Chen J, Wu H, Zheng Z, Jin C, Zhang X, Su W. Tetrahedron Lett. 2006; 47: 5383
- 9 Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
- 10 Van Leusen AM, Oldenziel OH. Tetrahedron Lett. 1972; 2373
- 11 Dhawan R, Arndtsen BA. J. Am. Chem. Soc. 2004; 126: 468
- 12 Kamijo S, Kanazawa C, Yamamoto Y. J. Am. Chem. Soc. 2005; 127: 9260
- 13 Reddy BV. S, Reddy MR, Rao YG, Yadav JS, Sridhar B. Org. Lett. 2013; 15: 464
- 14 Wang Z, Shi Y, Luo X, Han DM, Deng WP. New J. Chem. 2013; 37: 1742
- 15a Rao HS. P, Rafi S, Padmavathy K. Lett. Org. Chem. 2008; 64: 527
- 15b Rao HS. P, Padmavathy K, Vasantham K, Rafi S. Synth. Commun. 2009; 39: 1825
- 15c Rao HS. P, Desai A, Sarkar I, Mohapatra M, Mishra AK. Phys. Chem. Chem. Phys. 2014; 16: 1247
- 15d Rao HS. P, Babu M, Desai A. RSC Adv. 2014; 4: 11064
- 15e Rao HS. P, Desai A. RSC Adv. 2014; 4: 63642
- 16 Rao HS. P, Rafi S, Padmavathy K. Tetrahedron 2008; 64: 8037
- 17a Kim JH, Choi SY, Bou J, Lee S. J. Org. Chem. 2014; 79: 9253
- 17b Kim JH, Bouffard J, Lee S. Angew. Chem. Int. Ed. 2014; 53: 6435
- 18 Zhao MN, Liang H, Ren ZH, Guan ZH. Adv. Synth. Catal. 2013; 355: 221
- 19 Gao J, Hu M, Chen J, Yuan S, Chen W. Tetrahedron Lett. 1993; 34: 1617
- 20 Yu S, Xiong M, Xie X, Liu Y. Angew. Chem. Int. Ed. 2014; 53: 11596
- 21 Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
- 22a Shin H, Choi BS, Lee KK, Choi H.-w, Chang JH, Lee KW, Nam DH, Kim N.-S. Synthesis 2004; 2629
- 22b Choi BS, Chang JH, Choi H.-w, Kim YK, Lee KK, Lee KW, Lee JH, Heo T, Nam DH, Shin H. Org. Process Res. Dev. 2005; 9: 311
- 23 Hoang CT, Alezra V, Guillot R, Kouklovsky C. Org. Lett. 2007; 9: 2521
- 24 Lee AS, Cheng RY, Pan OG. Tetrahedron Lett. 1997; 38: 443
- 25a Cason J, Rinehart KC, Thorton SD. J. Org. Chem. 1953; 11: 1594
- 25b Reinhart KL. Jr. Org. Synth. Coll. Vol. IV 1963; 120
- 26 Synthesis of Ethyl 5-(2-Ethoxy-2-oxoethyl)-2-phenyl-1H-pyrrole-3-carboxylate (2a); Typical Procedure: To a slurry of zinc powder (0.96 g, 9.94 mmol) in anhydrous THF (6 mL) under a nitrogen atmosphere, TMSCl (0.26 g, 50 mol% in 1 mL THF) was added and the resulting suspension was heated to reflux for 20 min. To this refluxing slurry of activated zinc, benzonitrile 1a (0.51 g, 4.97 mmol in 1 mL THF) and ethyl bromoacetate (2.51 g, 17.91 mmol) were added simultaneously by using two syringes. Soon after initial addition of the two reactants the reaction mixture became dark green and finally red. The reaction mixture was heated to reflux for 6 h to achieve completion (TLC; EtOAc–hexanes, 20%; Rf = 0.3). The THF was removed under reduced pressure and the resulting mixture was subjected to silica gel column chromatography (EtOAc–hexanes, 20%) to afford 2a (1.35 g, 91%) as a pale-yellow viscous liquid. IR (KBr): 3334, 2930, 2858, 1738, 1702, 1675, 1223, 781 cm–1. 1H NMR [400 MHz, CDCl3 + CCl4 (1:1)]: δ = 9.48 (s, 1 H), 7.50–7.52 (m, 2 H), 7.26–7.30 (m, 3 H), 6.46–6.46 (d, J = 2 Hz, 1 H), 4.08–4.14 (m, 4 H), 3.55 (s, 2 H), 1.19–1.27 (m, 6 H). 13C NMR [100 MHz, CCl4 + CDCl3 (1:1)]: δ = 170.7 (C), 164.9 (C), 137.1 (C), 129.1 (2CH), 127.8 (2CH), 123.5 (C), 111.9 (C), 111.1 (CH), 61.1 (CH2), 59.4 (CH2), 32.7 (CH2), 14.2 (CH3), 14.1 (CH3). HRMS (ESI): m/z [M + Na]+ calcd for C16H14N2O3Na: 305.0902; found: 305.0900.