Subscribe to RSS
DOI: 10.1055/s-0034-1383365
Ophthalmologische Bildgebung mit Ultrahochfeld-Magnetresonanztomografie: technische Innovationen und wegweisende Anwendungen
Ophthalmological Imaging with Ultrahigh Field Magnetic Resonance Tomography: Technical Innovations and Frontier ApplicationsPublication History
eingereicht 10 October 2014
akzeptiert 04 November 2014
Publication Date:
17 December 2014 (online)
Zusammenfassung
Dieser Übersichtsartikel dokumentiert technische Innovationen der ophthalmologischen Bildgebung mittels Ultrahochfeld-Magnetresonanztomografie (UHF-MRT, B0 ≥ 7,0 T). Mit dem Ziel der ausgewogenen Standortbestimmung werden in vivo Beispiele für anatomisch detailgetreue, hochaufgelöste Bildgebung des Auges und Sehnervs vorgestellt. Erste klinische Anwendungen einschließlich der Beurteilung von Aderhautmelanomen und okularen Raumforderungen werden beschrieben. Aktuelle Forschungstrends und zukünftige Entwicklungen der MRT des Auges bei ultrahohen Magnetfeldern werden diskutiert. Ebenso werden deren mögliche Implikationen aus technischer und klinischer Sicht beleuchtet.
Abstract
This review documents technical progress in ophthalmic magnetic resonance imaging (MRI) at ultrahigh fields (UHF, B0 ≥ 7.0 T). The review surveys frontier applications of UHF-MRI tailored for high spatial resolution in vivo imaging of the eye, orbit and optic nerve. Early examples of clinical ophthalmic UHF-MRI including the assessment of melanoma of the choroid membrane and the characterisation of intraocular masses are demonstrated. A concluding section ventures a glance beyond the horizon and explores research promises along with future directions of ophthalmic UHF-MRI.
-
Literatur
- 1 Mafee MF, Karimi A, Shah J et al. Anatomy and pathology of the eye: role of MR imaging and CT. Neuroimaging Clin N Am 2005; 15: 23-47
- 2 Strenk SA, Strenk LM, Guo S. Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters. J Cataract Refract Surg 2006; 32: 1792-1798
- 3 Bolacchi F, Garaci FG, Martucci A et al. Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. Invest Ophthalmol Vis Sci 2012; 53: 4191-4196
- 4 Zhang Y, San Emeterio Nateras O, Peng Q et al. Blood flow MRI of the human retina/choroid during rest and isometric exercise. Invest Ophthalmol Vis Sci 2012; 53: 4299-4305
- 5 Sepahdari AR, Kapur R, Aakalu VK et al. Diffusion-weighted imaging of malignant ocular masses: initial results and directions for further study. AJNR Am J Neuroradiol 2012; 33: 314-319
- 6 Zhang Y, Nateras OS, Peng Q et al. Lamina-specific anatomic magnetic resonance imaging of the human retina. Invest Ophthalmol Vis Sci 2011; 52: 7232-7237
- 7 Bert RJ, Patz S, Ossiani M et al. High-resolution MR imaging of the human eye 2005. Acad Radiol 2006; 13: 368-378
- 8 Malhotra A, Minja FJ, Crum A et al. Ocular anatomy and cross-sectional imaging of the eye. Semin Ultrasound CT MR 2011; 32: 2-13
- 9 Apushkin MA, Shapiro MJ, Mafee MF. Retinoblastoma and simulating lesions: role of imaging. Neuroimaging Clin N Am 2005; 15: 49-67
- 10 Caranci F, Cicala D, Cappabianca S et al. Orbital fractures: role of imaging. Semin Ultrasound CT MR 2012; 33: 385-391
- 11 Richdale K, Wassenaar P, Teal Bluestein K et al. 7 Tesla MR imaging of the human eye in vivo. J Magn Reson Imaging 2009; 30: 924-932
- 12 Schueler AO, Hosten N, Bechrakis NE et al. High resolution magnetic resonance imaging of retinoblastoma. Br J Ophthalmol 2003; 87: 330-335
- 13 Lemke AJ, Kazi I, Mergner U et al. Retinoblastoma – MR appearance using a surface coil in comparison with histopathological results. Eur Radiol 2007; 17: 49-60
- 14 Tailor TD, Gupta D, Dalley RW et al. Orbital neoplasms in adults: clinical, radiologic, and pathologic review. Radiographics 2013; 33: 1739-1758
- 15 Barnett Y, Sutton IJ, Ghadiri M et al. Conventional and advanced imaging in neuromyelitis optica. AJNR Am J Neuroradiol 2014; 35: 1458-1466
- 16 Wendt M, Bockhorst K, He L et al. Accuracy and resolution of in vitro imaging based porcine lens volumetric measurements. Exp Eye Res 2011; 93: 741-752
- 17 Ishii K, Yamanari M, Iwata H et al. Relationship between changes in crystalline lens shape and axial elongation in young children. Invest Ophthalmol Vis Sci 2013; 54: 771-777
- 18 Patz S, Bert RJ, Frederick E et al. T(1) and T(2) measurements of the fine structures of the in vivo and enucleated human eye. J Magn Reson Imaging 2007; 26: 510-518
- 19 Walter U, Niendorf T, Graessl A et al. Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit – a hybrid tool for assessment of choroidal melanoma. Eur Radiol 2014; 24: 1112-1117
- 20 Lindner T, Langner S, Graessl A et al. High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. Exp Eye Res 2014; 125: 89-94
- 21 Langner S, Krueger PC, Niendorf T et al. [In vivo MR microscopy of the human eye]. Klin Monatsbl Augenheilkd 2014; 231: 1016-1022
- 22 Graessl A, Muhle M, Schwerter M et al. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses. Invest Radiol 2014; 49: 260-270
- 23 Beenakker JW, van Rijn GA, Luyten GP et al. High-resolution MRI of uveal melanoma using a microcoil phased array at 7 T. NMR Biomed 2013; 26: 1864-1869
- 24 van Rijn GA, Mourik JE, Teeuwisse WM et al. Magnetic resonance compatibility of intraocular lenses measured at 7 Tesla. Invest Ophthalmol Vis Sci 2012; 53: 3449-3453
- 25 Erb-Eigner K, Willerding G, Taupitz M et al. Diffusion-weighted imaging of ocular melanoma. Invest Radiol 2013; 48: 702-707
- 26 Müller K, Kuchling J, Dörr J et al. Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. J Neurol 2014; 261: 2032-2036
- 27 Kuchling J, Sinnecker T, Bozin I et al. [Ultrahigh field MRI in context of neurological diseases.]. Nervenarzt 2014; 85: 445-458
- 28 Kuchling J, Ramien C, Bozin I et al. Identical lesion morphology in primary progressive and relapsing-remitting MS-an ultrahigh field MRI study. Mult Scler 2014; [Epub ahead of print]
- 29 Sinnecker T, Bozin I, Dörr J et al. Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Mult Scler 2013; 19: 316-325
- 30 Wuerfel J, Sinnecker T, Ringelstein EB et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 2012; 18: 1592-1599
- 31 Sinnecker T, Mittelstaedt P, Dörr J et al. Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study. Arch Neurol 2012; 69: 739-745
- 32 Sinnecker T, Dörr J, Pfueller CF et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 2012; 79: 708-714
- 33 Beenakker JM, Shamonin DP, Webb AG et al. Automated retinal topographic maps measured with MRI. Investigative Ophthalmology and Visual Science (IOVS) 2014; in press
- 34 Dieringer MA, Deimling M, Santoro D et al. Rapid parametric mapping of the longitudinal relaxation time t1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 tesla, 3 tesla, and 7 tesla. PLoS One 2014; 9: e91318
- 35 Santoro D, Winter L, Müller A et al. Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study. PLoS One 2012; 7: e49963
- 36 Winter L, Oberacker E, Özerdem C et al. On the RF Heating of Intracoronary Stents at 7.0 T. Magn Reson Med 2014; [Epub ahead of print]
- 37 Meloni A, Hezel F, Positano V et al. Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T. Magn Reson Med 2014; 71: 2224-2230
- 38 Graessl A, Renz W, Hezel F et al. Modular 32-channel transceiver coil array for cardiac MRI at 7.0 T. Magn Reson Med 2014; 72: 276-290
- 39 Winter L, Ozerdem C, Hoffmann W et al. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and rf induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla. PLoS One 2013; 8: e61661
- 40 von Knobelsdorff-Brenkenhoff F, Tkachenko V, Winter L et al. Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2013; 15: 23
- 41 Niendorf T, Graessl A, Thalhammer C et al. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: a physics perspective. J Magn Reson 2013; 229: 208-222
- 42 Grassl A, Winter L, Thalhammer C et al. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol 2013; 82: 752-759
- 43 Fuchs K, Hezel F, Klix S et al. Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging. Magn Reson Med 2014; 72: 1590-1598
- 44 Carinci F, Santoro D, von Samson-Himmelstjerna F et al. Characterization of phase-based methods used for transmission field uniformity mapping: a magnetic resonance study at 3.0 T and 7.0 T. PLoS One 2013; 8: e57982
- 45 Winter L, Kellman P, Renz W et al. Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0 T: implications for clinical imaging. Eur Radiol 2012; 22: 2211-2220
- 46 Thalhammer C, Renz W, Winter L et al. Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application. J Magn Reson Imaging 2012; 36: 847-857
- 47 Madai VI, von Samson-Himmelstjerna FC, Bauer M et al. Ultrahigh-field MRI in human ischemic stroke – a 7 tesla study. PLoS One 2012; 7: e37631
- 48 Hezel F, Thalhammer C, Waiczies S et al. High spatial resolution and temporally resolved T2* mapping of normal human myocardium at 7.0 Tesla: an ultrahigh field magnetic resonance feasibility study. PLoS One 2012; 7: e52324
- 49 Dieringer MA, Renz W, Lindel T et al. Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7 T. J Magn Reson Imaging 2011; 33: 736-741
- 50 von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M et al. Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla – a pilot study. Eur Radiol 2010; 20: 2844-2852
- 51 Niendorf T, Sodickson DK, Krombach GA et al. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol 2010; 20: 2806-2816
- 52 Frauenrath T, Hezel F, Renz W et al. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010; 12: 67
- 53 Utting JF, Kozerke S, Luechinger R et al. Feasibility of k–t BLAST for BOLD fMRI with a spin-echo based acquisition at 3 T and 7 T. Invest Radiol 2009; 44: 495-502
- 54 Frauenrath T, Hezel F, Heinrichs U et al. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 2009; 44: 539-547
- 55 [Anonymous] Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Research Council. Washington, DC, USA: The National Academies Press; 2013: 232
- 56 Fu R, Brey WW, Shetty K et al. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. J Magn Reson 2005; 177: 1-8
- 57 Smeibidl P, Bird MD, Ehmler H et al. New hybrid magnet system for structure research at highest magnetic fields and temperatures in the millikelvin region. J Phys Conf Ser 2012; 400: 052034