Klin Monbl Augenheilkd 2014; 231(10): 1016-1022
DOI: 10.1055/s-0034-1368575
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

In-vivo-Magnetresonanzmikroskopie des humanen Auges

In Vivo MR Microscopy of the Human Eye
S. Langner
1   Institut für Diagnostische Radiologie und Neuroradiologie, Universitätsmedizin Greifswald, Greifswald
,
P.-C. Krueger
1   Institut für Diagnostische Radiologie und Neuroradiologie, Universitätsmedizin Greifswald, Greifswald
,
T. Lindner
4   Prodekanat Forschung und Wissenschaftsentwicklung AG Kleintierbildgebung, Universitätsmedizin Rostock
,
T. Niendorf
2   Berlin Ultrahigh Field Facility, Max-Delbrueck-Zentrum für Molekulare Medizin, Berlin
,
O. Stachs
3   Augenklinik, Universität Rostock, Rostock
› Author Affiliations
Further Information

Publication History

eingereicht 21 March 2014

akzeptiert 15 April 2014

Publication Date:
01 September 2014 (online)

Zusammenfassung

Die Magnetresonanzmikroskopie in ultrahohen Magnetfeldern von 7,0 Tesla und höher ist ein neues bildgebendes Verfahren, das zerstörungsfrei die hochauflösende, anatomiegetreue Darstellung der Strukturen des Auges und der Orbita ermöglicht. Dieser Übersichtsartikel liefert einen Überblick über die Methodik der MR-Mikroskopie in vivo und ihren Stellenwert im Vergleich zu anderen Untersuchungstechniken des Auges einschließlich eines Ausblicks auf mögliche klinische Anwendungen.

Abstract

MR microscopy using an ultra high-field MR system is a novel non-invasive imaging technique to explore the human eye without optical distortions. This review aims to provide an insight into the technique. Normal MR microscopic anatomy of the human eye in vivo is demonstrated and clinical applications of MR microscopy are discussed.

 
  • Literatur

  • 1 Wang Z, Chen D, Zeng Y et al. Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for iris parameter measurements in patients with primary angle closure glaucoma. Eye Sci 2013; 28: 1-6
  • 2 Radhakrishnan S, Yarovoy D. Development in anterior segment imaging for glaucoma. Curr Opin Ophthalmol 2014; 25: 98-103
  • 3 Ambrosio jr. R, Valbon BF, Faria-Correia F et al. Scheimpflug imaging for laser refractive surgery. Curr Opin Ophthalmol 2013; 24: 310-320
  • 4 Nolan W. Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography. Curr Opin Ophthalmol 2008; 19: 115-121
  • 5 Park SY, Kim SM, Song YM et al. Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography. Am J Ophthalmol 2013; 156: 557e2-566e2
  • 6 Salim S, Dorairaj S. Anterior segment imaging in glaucoma. Semin Ophthalmol 2013; 28: 113-125
  • 7 Wolffsohn JS, Peterson RC. Anterior ophthalmic imaging. Clin Exp Optom 2006; 89: 205-214
  • 8 Caranci F, Cicala D, Cappabianca S et al. Orbital fractures: role of imaging. Semin Ultrasound CT MR 2012; 33: 385-391
  • 9 Richdale K, Wassenaar P, Teal Bluestein K et al. 7 Tesla MR imaging of the human eye in vivo. J Magn Reson Imaging 2009; 30: 924-932
  • 10 Schueler AO, Hosten N, Bechrakis NE et al. High resolution magnetic resonance imaging of retinoblastoma. Br J Ophthalmol 2003; 87: 330-335
  • 11 Lemke AJ, Kazi I, Mergner U et al. Retinoblastoma – MR appearance using a surface coil in comparison with histopathological results. Eur Radiol 2007; 17: 49-60
  • 12 Tailor TD, Gupta D, Dalley RW et al. Orbital neoplasms in adults: clinical, radiologic, and pathologic review. Radiographics 2013; 33: 1739-1758
  • 13 Barnett Y, Sutton IJ, Ghadiri M et al. Conventional and Advanced Imaging in Neuromyelitis Optica. AJNR Am J Neuroradiol 2013; [Epub ahead of print]
  • 14 Langner S, Martin H, Terwee T et al. 7.1 T MRI to assess the anterior segment of the eye. Invest Ophthalmol Vis Sci 2010; 51: 6575-6581
  • 15 Wendt M, Bockhorst K, He L et al. Accuracy and resolution of in vitro imaging based porcine lens volumetric measurements. Exp Eye Res 2011; 93: 741-752
  • 16 Ishii K, Yamanari M, Iwata H et al. Relationship between changes in crystalline lens shape and axial elongation in young children. Invest Ophthalmol Vis Sci 2013; 54: 771-777
  • 17 Georgouli T, Chang B, Nelson M et al. Use of high-resolution microscopy coil MRI for depicting orbital anatomy. Orbit 2008; 27: 107-114
  • 18 Lemke AJ, Hosten N, Wiegel T et al. Intraocular metastases: differential diagnosis from uveal melanomas with high-resolution MRI using a surface coil. Eur Radiol 2001; 11: 2593-2601
  • 19 Lemke AJ, Kazi I, Landeck LM et al. [Differential diagnosis of intraconal orbital masses using high-resolution MRI with surface coils in 78 patients]. Rofo 2004; 176: 1436-1446
  • 20 Beenakker JW, van Rijn GA, Luyten GP et al. High-resolution MRI of uveal melanoma using a microcoil phased array at 7 T. NMR Biomed 2013; 26: 1864-1869
  • 21 Krueger PC, Stachs O, Hadlich S et al. MR Microscopy of the human eye at 7.1 T and correlation with histopathology-proof of principle. Orbit 2012; 31: 390-393
  • 22 Christoforidis JB, Wassenaar PA, Christoforidis GA et al. Retrobulbar vasculature using 7-T magnetic resonance imaging with dedicated eye surface coil. Graefes Arch Clin Exp Ophthalmol 2013; 251: 271-277
  • 23 Robitaille PM, Abduljalil AM, Kangarlu A et al. Human magnetic resonance imaging at 8 T. NMR Biomed 1998; 11: 263-265
  • 24 Fatterpekar GM, Naidich TP, Delman BN et al. Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 2002; 23: 1313-1321
  • 25 Stachs O, Langner S, Terwee T et al. In vivo 7.1 T magnetic resonance imaging to assess the lens geometry in rabbit eyes 3 years after lens-refilling surgery. J Cataract Refract Surg 2011; 37: 749-757
  • 26 Zhang Z, Hou Z, Lin X et al. Development of the fetal cerebral cortex in the second trimester: assessment with 7 T postmortem MR imaging. AJNR Am J Neuroradiol 2013; 34: 1462-1467
  • 27 Falke K, Kruger P, Hosten N et al. Experimental differentiation of intraocular masses using ultrahigh-field magnetic resonance imaging – a case series. PloS One 2013; 8: e81284
  • 28 Umutlu L, Ladd ME, Forsting M et al. 7 Tesla MR imaging: opportunities and challenges. Rofo 2014; 186: 121-129
  • 29 Graessl A, Muhle M, Schwerter M et al. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses. Invest Radiol 2014; 49: 260-270
  • 30 Berkowitz BA, McDonald C, Ito Y et al. Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept. Magn Reson Med 2001; 46: 412-416
  • 31 Sepahdari AR, Kapur R, Aakalu VK et al. Diffusion-weighted imaging of malignant ocular masses: initial results and directions for further study. AJNR Am J Neuroradiol 2012; 33: 314-319
  • 32 Sati P, Silva AC, van Gelderen P et al. In vivo quantification of T(2) anisotropy in white matter fibers in marmoset monkeys. Neuroimage 2012; 59: 979-985
  • 33 Wuerfel J, Sinnecker T, Ringelstein EB et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 2012; 18: 1592-1599
  • 34 Sinnecker T, Dorr J, Pfueller CF et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 2012; 79: 708-714
  • 35 Dieringer MA, Deimling M, Santoro D et al. Rapid parametric mapping of the longitudinal relaxation time t1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 tesla, 3 tesla, and 7 tesla. PLoS One 2014; 9: e91318
  • 36 Walter U, Niendorf T, Graessl A et al. Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit - a hybrid tool for assessment of choroidal melanoma. Eur Radiol 2014; 24: 1112-1117
  • 37 van der Kolk AG, Hendrikse J, Zwanenburg JJ et al. Clinical applications of 7 T MRI in the brain. Eur J Radiol 2013; 82: 708-718
  • 38 Filippi M, Evangelou N, Kangarlu A et al. Ultra-high-field MR imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 2014; 85: 60-66
  • 39 Langner S, Krueger PC, Stachs O et al. [MR microscopy of the human eye]. Klin Monatsbl Augenheilkd 2011; 228: 1073-1078
  • 40 Mele ML, Federici S. Gaze and eye-tracking solutions for psychological research. Cogn Process 2012; 13 (Suppl. 01) S261-S265