Subscribe to RSS
DOI: 10.1055/s-0034-1387531
Stellenwert der CT-Perfusion für die Therapie des Schlaganfalls
Perfusion CT in Acute StrokePublication History
Publication Date:
18 February 2015 (online)
Zusammenfassung
Moderne Mehrzeilen-CT-Scanner bieten die Möglichkeit einer multimodalen CT-Bildgebung mit einer nativen CT, einer CT-Angiografie und einer CT-Perfusion. Ein 64-Zeilen-CT ermöglicht eine Scanstrecke von 4 cm, zur Darstellung des gesamten zerebralen Parenchyms ist ein 128- bis 256-Zeilen-CT-Scanner erforderlich. Der routinemäßige Einsatz der Perfusions-CT erfordert eine Optimierung des Scan-Protokolls zur Reduktion der Strahlendosis. Bei optimiertem Protokoll sind von einer CT-Perfusion keine deterministischen Strahlenschäden zu befürchten. Die CT-Perfusionsbildgebung erhöht die Detektionsrate von ischämischen Schlaganfällen im Vergleich zur Nativ-CT +/– CT-Angiografie. Dies betrifft insbesondere die Detektion kortikaler, peripherer Ischämien. Die Aussagekraft bezüglich lakunärer und infratentorieller Infarkte bleibt eingeschränkt. Die Perfusions-CT erlaubt eine Abschätzung der Kollateralsituation bei akutem Gefäßverschluss. Verlässliche Schwellenwerte der Perfusionsparameter zur Bestimmung des bereits irreversibel geschädigten Kerns der Ischämie und der Penumbra liegen für die CT-Perfusion nicht vor, zumal die Berechnung der Perfusionskarten von der Gerätetechnik und dem Postprocessing-Algorithmus abhängt. Eine Vielzahl von Studien sprechen aber dafür, dass eine Minderung des zerebralen Blutvolumes (CBV) von unter 2 ml/100 g mit großer Wahrscheinlichkeit den Kern der Ischämie darstellt. Eine ausgedehnte CBV-Läsion wird als ungünstiger Prädiktor für das Stroke-Outcome angesehen auch bei erfolgreicher Rekanalisation. Wesentlicher Faktor aus der CT-Bildgebung zur Indikationsstellung einer Reperfusionstherapie bleibt das Ausmaß der Frühhypodensitäten in der Nativ-CT. Das Perfusions-CT erhöht aber die diagnostische und therapeutische Sicherheit in der Akutsituation und erlaubt ähnlich wie das Schlaganfall-MRT die Definition von Risikogewebe nach dem Mismatch-Konzept. Weitere Erkenntnisse über die Validität der Perfusionsparameter werden im Rahmen der aktuellen Thrombektomiestudien zu erwarten sein.
Abstract
Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 – 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.
-
Literatur
- 1 Schrader I, Wilk D, Jansen O et al. Whole-brain perfusion CT using a toggling table technique to predict final infarct volume in acute ischemic stroke. Rofo 2013; 184: 975-982
- 2 Mangla R, Ekhom S, Jahromi BS et al. Ct perfusion in acute stroke: Know the mimics, potential pitfalls, artifacts, and technical errors. Emerg Radiol 2014; 21: 49-65
- 3 Orrison Jr WW, Snyder KV, Hopkins LN et al. Whole-brain dynamic CT angiography and perfusion imaging. Clin Radiol 2011; 66: 566-574
- 4 Wintermark M, Lev MH. Fda investigates the safety of brain perfusion ct. AJNR Am J Neuroradiol 2010; 31: 2-3
- 5 Imanishi Y, Fukui A, Niimi H et al. Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of mdct and dsa. Eur Radiol 2005; 15: 41-46
- 6 Forkert ND, Kaesemann P, Treszl A et al. Comparison of 10 ttp and tmax estimation techniques for MR perfusion-diffusion mismatch quantification in acute stroke. AJNR Am J Neuroradiol 2013; 34: 1697-1703
- 7 Neumann-Haefelin T, Wittsack HJ, Wenserski F et al. Diffusion- and perfusion-weighted MRI. The dwi/pwi mismatch region in acute stroke. Stroke 1999; 30: 1591-1597
- 8 Zaro-Weber O, Moeller-Hartmann W, Heiss WD et al. Mri perfusion maps in acute stroke validated with 15o-water positron emission tomography. Stroke 2010; 41: 443-449
- 9 Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994; 36: 557-565
- 10 Wintermark M, Flanders AE, Velthuis B et al. Perfusion-CT assessment of infarct core and penumbra: Receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006; 37: 979-985
- 11 Frolich AM, Schrader D, Klotz E et al. 4d CT angiography more closely defines intracranial thrombus burden than single-phase CT angiography. AJNR Am J Neuroradiol 2013; 34: 1908-1913
- 12 Schramm P, Schellinger PD, Klotz E et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours' duration. Stroke 2004; 35: 1652-1658
- 13 Kucinski T, Vaterlein O, Glauche V et al. Correlation of apparent diffusion coefficient and computed tomography density in acute ischemic stroke. Stroke 2002; 33: 1786-1791
- 14 Saur D, Kucinski T, Grzyska U et al. Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR Am J Neuroradiol 2003; 24: 878-885
- 15 von Kummer R. Effect of training in reading CT scans on patient selection for ecass II. Neurology 1998; 51: S50-52
- 16 Wardlaw JM, Mielke O. Early signs of brain infarction at CT: Observer reliability and outcome after thrombolytic treatment – systematic review. Radiology 2005; 235: 444-453
- 17 Wintermark M, Fischbein NJ, Smith WS et al. Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol 2005; 26: 104-112
- 18 Rai AT, Carpenter JS, Peykanu JA et al. The role of CT perfusion imaging in acute stroke diagnosis: A large single-center experience. J Emerg Med 2008; 35: 287-292
- 19 Lin K, Do KG, Ong P et al. Perfusion CT improves diagnostic accuracy for hyperacute ischemic stroke in the 3-hour window: Study of 100 patients with diffusion MRI confirmation. Cerebrovasc Dis 2009; 28: 72-79
- 20 Eckert B, Kusel T, Leppien A et al. Clinical outcome and imaging follow-up in acute stroke patients with normal perfusion CT and normal CT angiography. Neuroradiology 2011; 53: 79-88
- 21 Pallesen LP, Gerber J, Dzialowski I et al. Diagnostic and prognostic impact of pc-aspects applied to perfusion CT in the basilar artery international cooperation study. J Neuroimaging 2014; Jun 18; [Epub ahead of print]
- 22 Wintermark M, Albers GW, Broderick JP et al. Acute stroke imaging research roadmap II. Stroke 2013; 44: 2628-2639
- 23 Dani KA, Thomas RG, Chappell FM et al. Systematic review of perfusion imaging with computed tomography and magnetic resonance in acute ischemic stroke: Heterogeneity of acquisition and postprocessing parameters: A translational medicine research collaboration multicentre acute stroke imaging study. Stroke 2012; 43: 563-566
- 24 Kamalian S, Kamalian S, Maas MB et al. CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke 2011; 42: 1923-1928
- 25 Abels B, Villablanca JP, Tomandl BF et al. Acute stroke: A comparison of different CT perfusion algorithms and validation of ischaemic lesions by follow-up imaging. Eur Radiol 2012; 22: 2559-2567
- 26 Gonzalez RG, Copen WA, Schaefer PW et al. The massachusetts general hospital acute stroke imaging algorithm: An experience and evidence based approach. J Neurointerv Surg 2013; 5 (Suppl. 01) i7-i12
- 27 Zhu G, Michel P, Aghaebrahim A et al. Computed tomography workup of patients suspected of acute ischemic stroke: Perfusion computed tomography adds value compared with clinical evaluation, noncontrast computed tomography, and computed tomography angiogram in terms of predicting outcome. Stroke 2013; 44: 1049-1055
- 28 Kamalian S, Kamalian S, Konstas AA et al. CT perfusion mean transit time maps optimally distinguish benign oligemia from true “at-risk” ischemic penumbra, but thresholds vary by postprocessing technique. AJNR Am J Neuroradiol 2012; 33: 545-549
- 29 Kidwell CS, Alger JR, Saver JL. Beyond mismatch: Evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003; 34: 2729-2735
- 30 Silvennoinen HM, Hamberg LM, Lindsberg PJ et al. CT perfusion identifies increased salvage of tissue in patients receiving intravenous recombinant tissue plasminogen activator within 3 hours of stroke onset. AJNR Am J Neuroradiol 2008; 29: 1118-1123
- 31 Baron JC. Mapping the ischaemic penumbra with pet: Implications for acute stroke treatment. Cerebrovasc Dis 1999; 9: 193-201
- 32 van Seeters T, Biessels GJ, van der Schaaf IC et al. Prediction of outcome in patients with suspected acute ischaemic stroke with CT perfusion and CT angiography: The dutch acute stroke trial (dust) study protocol. BMC Neurol 2014; 14: 37
- 33 Barber PA, Demchuk AM, Zhang J et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Aspects study group. Alberta stroke programme early CT score. Lancet 2000; 355: 1670-1674
- 34 Lin K, Rapalino O, Law M et al. Accuracy of the alberta stroke program early CT score during the first 3 hours of middle cerebral artery stroke: Comparison of noncontrast CT, CT angiography source images, and CT perfusion. AJNR Am J Neuroradiol 2008; 29: 931-936
- 35 Aviv RI, Mandelcorn J, Chakraborty S et al. Alberta stroke program early CT scoring of CT perfusion in early stroke visualization and assessment. AJNR Am J Neuroradiol 2007; 28: 1975-1980
- 36 Saake M, Breuer L, Golitz P et al. Clinical/perfusion CT cbv mismatch as prognostic factor in intraarterial thrombectomy in acute anterior circulation stroke. Clin Neurol Neurosurg 2014; 121: 39-45
- 37 Prabhakaran S, Soltanolkotabi M, Honarmand AR et al. Perfusion-based selection for endovascular reperfusion therapy in anterior circulation acute ischemic stroke. AJNR Am J Neuroradiol 2014; 35: 1303-1308
- 38 Davis SM, Donnan GA, Parsons MW et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (epithet): A placebo-controlled randomised trial. Lancet Neurol 2008; 7: 299-309
- 39 Hacke W, Furlan AJ, Al-Rawi Y et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (dias-2): A prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009; 8: 141-150
- 40 Garcia-Bermejo P, Calleja AI, Perez-Fernandez S et al. Perfusion computed tomography-guided intravenous thrombolysis for acute ischemic stroke beyond 4.5 hours: A case-control study. Cerebrovasc Dis 2012; 34: 31-37
- 41 Sztriha LK, Manawadu D, Jarosz J et al. Safety and clinical outcome of thrombolysis in ischaemic stroke using a perfusion CT mismatch between 3 and 6 hours. PLoS One 2011; 6: e25796