Subscribe to RSS
DOI: 10.1055/s-0035-1553325
Transient Elastography to Assess the Cervical Ripening during Pregnancy: A Preliminary Study
Transiente Elastografie zur Bestimmung der Zervixreife in der Schwangerschaft: eine VorstudiePublication History
03 December 2014
28 April 2015
Publication Date:
07 August 2015 (online)
Abstract
Purpose To explore the feasibility of transient elastography (TE) to quantify cervical stiffness changes during normal pregnancy and its spatial variability.
Materials and Methods TE was used to quantify the cervical stiffness in four anatomical regions. 42 women between 17 and 43 years of age and at 6 – 41 weeks of gestation were studied. The stiffness was related to gestational age at the time of examination, interval from ultrasound examination to delivery and cervical length to evaluate the potential of TE to assess cervical ripening. In addition, a sensitivity analysis based on Cronbach’s alpha coefficient was carried out to assess the concordance between inter/intra-operator measurements.
Results There were significant correlations between cervical stiffness measured in the four regions with gestational age and the remaining time for delivery. Results confirm stiffness variability within the cervix. No significant association was found between cervical length and stiffness in the four ROIs. Associations between gestational age and remaining time for delivery with cervical length present weaker correlations than with cervical stiffness. The external part of the cervix was significantly softer than the internal one, and these stiffness values vary significantly in the anterior compared to the posterior cervix. The measurements taken by the same and by two different observers for different regions in the cervix were reliable and reproducible.
Conclusion It is feasible to objectively quantify the decrease of cervical stiffness correlated to gestational age. Transient elastography is a valuable promising tool to provide additional information on the process of cervical effacement to that obtained from digital examination and conventional ultrasound. Further studies are needed to assess the feasibility of the technique in obstetric clinical applications, such as prediction of preterm birth or success in labor induction.
Zusammenfassung
Ziel Machbarkeitsprüfung der transienten Elastografie (TE), um räumliche Veränderungen der Zervixsteifkeit (CS) zum Laufe einer Normalschwangerschaft zu erfassen
Material und Methoden Die CS wurde mittels TE in 4 Regionen bei 40 Frauen im Alter von 17 bis 43 Jahren in der 6. – 41. Schwangerschaftswoche bestimmt. Die CS wurde mit dem Gestationsalter zum Untersuchungszeitpunkt, dem Intervall zwischen US-Untersuchung und Entbindung und die Zervixlänge korreliert, um das Potenzial der TE hinsichtlich der Zervixreife zu beurteilen. Danach wurde eine Sensitivitätsanalyse (α-Koeffizienten nach Cronbach) durchgeführt, um die Übereinstimmung der Inter-/Intra-Operator-Messungen zu bestimmen.
Ergebnisse Die CS korrelierte in 4 Regionen mit dem Gestationsalter und der Zeit bis zur Entbindung signifikant. Die Ergebnisse bestätigen die Variabilität der Steifigkeit innerhalb der Zervix. Kein signifikanter Zusammenhang zwischen Zervixlänge und CS in den 4 ROIs. Gestationsalter und Zeit bis zur Entbindung zeigten eine schwächere Korrelation der Zervixlänge als mit der CS. Der äußere Bereich der Zervix war signifikant weicher als der innere Bereich, und diese CS-Werte variierten signifikant in der vorderen Zervix im Vergleich zur hinteren Zervix. Die Intra und Inter-Observervarianz der Messwerte in den 4 Regionen waren zuverlässig und reproduzierbar.
Schlussfolgerung Man kann die sinkende Zervixsteifigkeit im Laufe des Gesationsalters bestimmen. Die TE ist wertvoll und vielversprechend. Sie liefert Zusatzinformationen zur Muttermundöffnung, die über die manuelle Untersuchung und den herkömmlichen US hinaus gehen. Weitere Untersuchungen sind nötig um den Einsatz der TE bei geburtshilflichen Anwendungen, wie Vorhersage von Frühgeburten und erfolgreicher Geburtseinleitung, zu bewerten.
-
References
- 1 Khalil MR, Thorsen P, Uldbjerg N. Cervical ultrasound elastography may hold potential to predict risk of preterm birth. Ultrasound in Obstetrics & Gynecology 2013; 60: A4570
- 2 Köbbing K, Fruscalzo A, Hammer K. et al. Quantitative elastography of the uterine cervix as a predictor of preterm delivery. Journal of Perinatology 2014; 1-7
- 3 Swiatkowska-Freund M, Preis K. Elastography of the uterine cervix: implications for success of induction of labor. Ultrasound in Obstetrics & Gynecology 2011; 38: 52-56
- 4 Pereira S, Frick AP, Poon LC. et al. Successful induction of labor: prediction by pre-induction cervical length, angle of progression and cervical elastography. Ultrasound in Obstetrics & Gynecology 2014; 44: 468-475
- 5 Wozniak S, Czuczwar P, Szkodziak P. et al. Elastography in predicting preterm delivery in asymptomatic, low-risk women: a prospective observational study. BMC pregnancy and childbirth 2014; 14: 238
- 6 Thomas A, Kmmel S, Gemeinhardt O. et al. Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Academic radiology 2007; 14: 193-200
- 7 Molina FS, Gómez LF, Florido J. et al. Quantification of cervical elastography: a reproducibility study. Ultrasound in Obstetrics & Gynecology 2012; 39: 685-689
- 8 Fruscalzo A, Schmitz R, Klockenbusch W. et al. Reliability of cervix elastography in the late first and second trimester of pregnancy. Ultraschall in der Medizin-European Journal of Ultrasound 2012; 33: E101-E107
- 9 Hernandez-Andrade E, Hassan SS, Ahn H. et al. Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography. Ultrasound in Obstetrics & Gynecology 2013; 41: 152-161
- 10 Feltovich H, Hall TJ. Quantitative imaging of the cervix: setting the bar. Ultrasound in Obstetrics & Gynecology 2013; 41: 121-128
- 11 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in Med 2013; 34: 169-184
- 12 Melodelima D, Bamber JC, Duck FA. et al. Transient elastography using impulsive ultrasound radiation force: a preliminary comparison with surface palpation elastography. Ultrasound in medicine & biology 2007; 33: 959-969
- 13 Carlson LC, Feltovich H, Palmeri ML. et al. Estimation of shear wave speed in the human uterine cervix. Ultrasound in Obstetrics & Gynecology 2014; 43: 452-458
- 14 Carlson LC, Romero ST, Palmeri ML. et al. Changes in shear wave speed pre and post induction of labor: a feasibility study. Ultrasound in Obstetrics & Gynecology Online-Publication: 2014;
- 15 Gennisson JL, Deffieux T, Fink M. et al. Ultrasound elastography: Principles and techniques. Diagnostic and interventional imaging 2013; 94: 487-495
- 16 Peralta L, Mourier E, Richard C. et al. 117 in vivo evaluation of the cervical stiffness evolution during indiced labor in ewes using elastohraphy. Reproduction, Fertility and Development 2015; 27: 150-151
- 17 Cohen J. Statistical power analysis. Current directions in psychological science 1992; 98-101
- 18 Bercoff J, Tanter M, Fink M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Transactions On Ultrasonics Ferroelectrics and Frequency Control 2004; 51: 396-409
- 19 Bercoff J, Tanter M, Fink M. Sonic boom in soft materials: The elastic cerenkov effect. Applied Physics Letters 2004; 84: 2202-2204
- 20 House M, Kaplan DL, Socrate S. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Seminars in perinatology 2009; 33: 300-307
- 21 Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends in Endocrinology & Metabolism 2010; 21: 353-361
- 22 George D, Mallery P. SPSS for Windows step by step: A simple guide and reference. 4th edition. Allyn & Bacon; 2003
- 23 Tanter M, Bercoff J, Athanasiou J. et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound in medicine & biology 2008; 34: 1373-1386
- 24 Muller M, Gennisson JL, Deffieux T. et al. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: Preliminary in vivo feasibility study. Ultrasound In Medicine and Biology 2009; 35: 219-229
- 25 Brum J, Bernal M, Gennisson JL. et al. In vivo evaluation of the elastic anisotropy of the human achilles tendon using shear wave dispersion analysis. Physics in medicine and biology 2014; 59: 505-523
- 26 Gennisson JL, Muller M, Gabor P. et al. Quantification of elasticity changes in the myometrium during labor using supersonic shear imaging: A feasibility study. Ultrasonics Online-Publication 2014;
- 27 Badir S, Mazza E, Zimmermann R. et al. Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique. Prenatal diagnosis 2013; 33: 737-741
- 28 Parra-Saavedra M, Gomez L, Barrero A. et al. Prediction of preterm birth using the cervical consistency index. Ultrasound in Obstetrics & Gynecology 2011; 38: 44-51
- 29 Shamdasani V, Kim Y. Two-dimensional autocorrelation method for ultrasound-based strain estimation. In Engineering in Medicine and Biology Society 2004 IEMBS'04. 26th Annual International Conference of the IEEE 1. 1380-1383
- 30 Kim S, Aglyamov SR, Park S. et al. An autocorrelation-based method for improvement of sub-pixel displacement estimation in ultrasound strain imaging. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions 2011; 58: 838-843
- 31 Wojcinski S, Brandhorst K, Sadigh G. et al. Acoustic radiation force impulse imaging with virtual touch tissue quantification: measurements of normal breast tissue and dependence on the degree of pre-compression. Ultrasound in medicine & biology 2013; 39: 2226-2232
- 32 Myers K, Socrate S, Tzeranis D. et al. Changes in the biochemical constituents and morphologic appearance of the human cervical stroma during pregnancy. European Journal of Obstetrics & Gynecology and Reproductive Biology 2009; 144: S82-S89
- 33 Peralta L, Rus G, Bochud N. et al. Mechanical assessment of cervical remodelling in pregnancy: insight from a synthetic model. Journal of Biomechanics 2015; 48: 1557-1565
- 34 Peralta L, Rus G, Bochud N. et al. Assessing viscoelasticity of shear wave propagation in cervical tissue by multiscale computational simulation. Journal of Biomechanics 2015; 48: 1549-1556
- 35 Kiss MZ, Hobson MA, Varghese T. et al. Frequency-dependent complex modulus of the uterus: preliminary results. Physics in medicine and biology 2006; 51: 3683-3695
- 36 DeWall RJ, Varghese T, Kliewer MA. et al. Compression-dependent viscoelastic behavior of human cervix tissue. Ultrasonic imaging 2010; 32: 214-228
- 37 Wang Y, Insana MF. Viscoelastic properties of rodent mammary tumors using ultrasonic shear-wave imaging. Ultrasonic imaging 2013; 35: 126-145
- 38 Berg WA, Cosgrove DO, Doré CJ. et al. Shear-wave elastography improves the specificity of breast us: the be1 multinational study of 939 masses. Radiology 2012; 262: 345-449
- 39 Yasar TK, Royston TJ, Magin RL. Wideband mr elastography for viscoelasticity model identification. Magnetic Resonance in Medicine 2013; 70: 479-489