Diabetologie und Stoffwechsel 2015; 10(S 02): S199-S204
DOI: 10.1055/s-0035-1553884
DDG Praxisempfehlung
© Georg Thieme Verlag KG Stuttgart · New York

Diabetes, Sport und Bewegung

K. Esefeld
1   Präventive und Rehabilitative Sportmedizin, Klinikum rechts der Isar, Technische Universität München, München
,
P. Zimmer
2   AG Diabetes und Sport der DDG
,
M. Stumvoll
3   Med. Klinik und Poliklinik III, Universitätsklinik Leipzig, Leipzig
,
M. Halle
1   Präventive und Rehabilitative Sportmedizin, Klinikum rechts der Isar, Technische Universität München, München
2   AG Diabetes und Sport der DDG
4   DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
5   Else Kröner Fresenius-Zentrum, Klinikum rechts der Isar, Munich, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
03 November 2015 (online)

Physiologie der Muskelarbeit

Muskelarbeit bezeichnet ganz allgemein Körperbewegung oder körperliche Aktivität durch Muskelkontraktionen, die zu einem Energieverbrauch zusätzlich zum Grundumsatz führt. Jede Art körperlicher Aktivität, unabhängig davon, ob sie im Alltagsleben, im Beruf oder in der Freizeit in strukturierter Form als Sport geleistet wird, folgt den gleichen metabolischen und hormonellen Regelmechanismen.

Unter Ruhebedingungen wird der Energiebedarf der Skelettmuskulatur fast vollständig durch die Oxidation freier Fettsäuren gedeckt. Mit einsetzender Muskelarbeit steigt der Energiebedarf akut an und kann unter Umständen das 8- bis 10-Fache des Ruhebedarfs erreichen. Zur Deckung dieses Energiebedarfs greift die Muskulatur anfangs vorrangig auf Glukose und erst bei länger als einer Stunde andauernder Muskelarbeit auf eine Mischung aus freien Fettsäuren und Glukose zurück. Dabei überwiegt der Anteil der Fettsäureoxidation und variiert in Abhängigkeit vom Trainingszustand zwischen 60 und 75 % der VO2max.

Während körperlicher Aktivität verbraucht der Muskel zunächst freie Glukose, die anschließend aus dem Abbau der muskulären Glykogenreserven nachgeliefert wird. Für die Muskelarbeit wird zudem auch Glukose aus dem Blut verwendet und insulinabhängig in die Zelle aufgenommen. Die Steigerung des Glukosetransports aus dem Blut in die Muskelzelle erfolgt durch die Translokation der Glukosetransporter (GLUT-4) vom endoplasmatischen Retikulum in die Muskelzellmembran. Zusätzlich steigert jede Muskelaktivität genau diesen Vorgang insulin un abhängig. Die Eigenkontraktion der Muskulatur entspricht somit der physiologischen Wirkung des Insulins [1] [2] [3] [4].

Der durch die Muskelarbeit bedingte Glukoseabfall wird durch eine präzise und adäquate Steigerung der hepatischen Glukosefreisetzung ausgeglichen, wenn keine gleichzeitige Glukoseresorption aus der Nahrung zur Verfügung steht. Die Steigerung dieser Freisetzung wird im Wesentlichen durch eine Hemmung der pankreatischen Insulinsekretion und dem daraus resultierenden Abfall des Insulinspiegels im Pfortaderblut bewirkt. Unterstützend und modulierend wirken dabei die kontrainsulinären Hormone (Katecholamine, Glukagon, Cortisol und Wachstumshormone) [2] [3] [5] [6]. Diese Anpassungsvorgänge der Glukosebereitstellung führen je nach Dauer und Intensität der Muskelarbeit zur teilweisen bis vollständigen Entleerung der muskulären und hepatischen Glukosespeicher. Diese werden nach Beendigung der Muskelarbeit wieder aufgefüllt. Abhängig vom Entleerungsgrad kann die Glukoseaufnahme in die Muskulatur noch bis zu 48 Stunden nach Ende der Muskelarbeit erhöht sein.

 
  • Literatur

  • 1 Dohm GL. Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise. J Appl Physiol 2002; 93: 782-787
  • 2 O'Gorman DJ, Karlsson HK, McQuaid S et al. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 2006; 49: 2983-2992
  • 3 Rodnick KJ, Henriksen EJ, James DE et al. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. Am J Physiol 1992; 262: C9-C14
  • 4 Sigal RJ, Kenny GP, Wasserman DH et al. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care 2006; 29: 1433-1438
  • 5 Hamdy O, Goodyear LJ, Horton ES. Diet and exercise in type 2 diabetes mellitus. Endocrinol Metab Clin North Am 2001; 30: 883-907
  • 6 Wojtaszewski JF, Nielsen JN, Richter EA. Invited review: effect of acute exercise on insulin signaling and action in humans. J Appl Physiol 2002; 93: 384-392
  • 7 Herbst A, Kordonouri O, Schwab KO et al. Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: a multicenter study of 23,251 patients. Diabetes Care 2007; 30: 2098-2100
  • 8 Selam JL, Casassus P, Bruzzo F et al. Exercise is not associated with better diabetes control in type 1 and type 2 diabetic subjects. Acta Diabetol 1992; 29: 11-13
  • 9 Kemmer FW, Berger M. Therapy and better quality of life: the dichotomous role of exercise in diabetes mellitus. Diabetes Metab Rev 1986; 2: 53-68
  • 10 Kemmer FW. Prevention of hypoglycemia during exercise in type I diabetes. Diabetes Care 1992; 15: 1732-1735
  • 11 Goldstein DE, Little RR, Lorenz RA et al. Tests of glycemia in diabetes. Diabetes Care 2004; 27 (Suppl. 01) S91-S93
  • 12 Thurm U, Harper PN. I'm running on insulin. Summary of the history of the International Diabetic Athletes Association. Diabetes Care 1992; 15: 1811-1813
  • 13 Bussau VA, Ferreira LD, Jones TW et al. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care 2006; 29: 601-606
  • 14 Davey RJ, Howe W, Paramalingam N et al. The effect of midday moderate-intensity exercise on postexercise hypoglycemia risk in individuals with type 1 diabetes. J Clin Endocrinol Metab 2013; 98: 2908-2914
  • 15 Deuster PA, Chrousos GP, Luger A et al. Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism 1989; 38: 141-148
  • 16 Flood L, Constance A. Diabetes and exercise safety. Am J Nurs 2002; 102: 47-55
  • 17 Frid A, Ostman J, Linde B. Hypoglycemia risk during exercise after intramuscular injection of insulin in thigh in IDDM. Diabetes Care 1990; 13: 473-477
  • 18 Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care 2005; 28: 1289-1294
  • 19 Guelfi KJ, Ratnam N, Smythe GA et al. Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes. Am J Physiol Endocrinol Metab 2007; 292: E865-E870
  • 20 Harris GD, White RD. Diabetes in the competitive athlete. Curr Sports Med Rep 2012; 11: 309-315
  • 21 Kemmer FW, Berchtold P, Berger M et al. Exercise-induced fall of blood glucose in insulin-treated diabetics unrelated to alteration of insulin mobilization. Diabetes 1979; 28: 1131-1137
  • 22 Koivisto VA, Felig P. Effects of leg exercise on insulin absorption in diabetic patients. N Engl J Med 1978; 298: 79-83
  • 23 Rabasa-Lhoret R, Bourque J, Ducros F et al. Guidelines for premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralente-lispro). Diabetes Care 2001; 24: 625-630
  • 24 Ronnemaa T, Koivisto VA. Combined effect of exercise and ambient temperature on insulin absorption and postprandial glycemia in type I patients. Diabetes Care 1988; 11: 769-773
  • 25 Sandoval DA, Guy DL, Richardson MA et al. Effects of low and moderate antecedent exercise on counterregulatory responses to subsequent hypoglycemia in type 1 diabetes. Diabetes 2004; 53: 1798-1806
  • 26 Tonoli C, Heyman E, Roelands B et al. Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. Sports Med 2012; 42: 1059-1080
  • 27 Tuominen JA, Karonen SL, Melamies L et al. Exercise-induced hypoglycaemia in IDDM patients treated with a short-acting insulin analogue. Diabetologia 1995; 38: 106-111
  • 28 Yardley JE, Kenny GP, Perkins BA et al. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care 2012; 35: 669-675
  • 29 Sigal RJ, Kenny GP, Wasserman DH et al. Physical activity/exercise and type 2 diabetes. Diabetes Care 2004; 27: 2518-2539
  • 30 Hu G, Jousilahti P, Barengo NC et al. Physical activity, cardiovascular risk factors, and mortality among Finnish adults with diabetes. Diabetes Care 2005; 28: 799-805
  • 31 Wing RR, Bolin P, Brancati FL et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145-154
  • 32 Di LC, Fanelli C, Lucidi P et al. Make your diabetic patients walk: long-term impact of different amounts of physical activity on type 2 diabetes. Diabetes Care 2005; 28: 1295-1302
  • 33 Gregg EW, Chen H, Wagenknecht LE et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 2012; 308: 2489-2496
  • 34 Unick JL, Beavers D, Bond DS et al. The long-term effectiveness of a lifestyle intervention in severely obese individuals. Am J Med 2013; 126: 236-242
  • 35 Yates T, Haffner SM, Schulte PJ et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. Lancet 2014; 383: 1059-1066
  • 36 Hu G, Jousilahti P, Barengo NC et al. Physical activity, cardiovascular risk factors, and mortality among Finnish adults with diabetes. Diabetes Care 2005; 28: 799-805
  • 37 Knowler WC, Fowler SE, Hamman RF et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009; 374: 1677-1686
  • 38 Wing RR, Bolin P, Brancati FL et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145-154
  • 39 Pi-Sunyer X, Blackburn G, Brancati FL et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care 2007; 30: 1374-1383
  • 40 Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med 2010; 170: 1566-1575
  • 41 Karstoft K, Winding K, Knudsen SH et al. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 2013; 36: 228-236
  • 42 Rynders CA, Weltman JY, Jiang B et al. Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J Clin Endocrinol Metab 2014; 99: 220-228
  • 43 The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care 2002; 25: 2165-2171
  • 44 Church TS, Cheng YJ, Earnest CP et al. Exercise capacity and body composition as predictors of mortality among men with diabetes. Diabetes Care 2004; 27: 83-88
  • 45 Hu FB, Sigal RJ, Rich-Edwards JW et al. Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. JAMA 1999; 282: 1433-1439
  • 46 Hu FB, Manson JE, Stampfer MJ et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001; 345: 790-797
  • 47 Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 2011; 34: 1249-1257
  • 48 Knowler WC, Barrett-Connor E, Fowler SE et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403
  • 49 Lindstrom J, Ilanne-Parikka P, Peltonen M et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 2006; 368: 1673-1679
  • 50 Pan XR, Li GW, Hu YH et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997; 20: 537-544
  • 51 Petrella RJ, Lattanzio CN, Demeray A et al. Can adoption of regular exercise later in life prevent metabolic risk for cardiovascular disease?. Diabetes Care 2005; 28: 694-701
  • 52 Ratner R, Goldberg R, Haffner S et al. Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care 2005; 28: 888-894
  • 53 Tuomilehto J, Lindstrom J, Eriksson JG et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343-1350
  • 54 Boule NG, Weisnagel SJ, Lakka TA et al. Effects of exercise training on glucose homeostasis: the HERITAGE Family Study. Diabetes Care 2005; 28: 108-114
  • 55 Boule NG, Haddad E, Kenny GP et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001; 286: 1218-1227
  • 56 Sparks LM, Johannsen NM, Church TS et al. Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J Clin Endocrinol Metab 2013; 98: 1694-1702
  • 57 Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 2006; 29: 2518-2527
  • 58 Umpierre D, Ribeiro PA, Kramer CK et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 2011; 305: 1790-1799
  • 59 Umpierre D, Ribeiro PA, Schaan BD et al. Volume of supervised exercise training impacts glycaemic control in patients with type 2 diabetes: a systematic review with meta-regression analysis. Diabetologia 2012;
  • 60 Yamaoka K, Tango T. Efficacy of lifestyle education to prevent type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 2005; 28: 2780-2786
  • 61 Del Pozo-Cruz J, fonso-Rosa RM, Ugia JL et al. A primary care-based randomized controlled trial of 12-week whole-body vibration for balance improvement in type 2 diabetes mellitus. Arch Phys Med Rehabil 2013; 94: 2112-2118
  • 62 Haffner SM, Lehto S, Ronnemaa T et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229-234
  • 63 Mittleman MA, Maclure M, Tofler GH et al. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of Myocardial Infarction Onset Study Investigators. N Engl J Med 1993; 329: 1677-1683
  • 64 Willich SN, Lewis M, Lowel H et al. Physical exertion as a trigger of acute myocardial infarction. Triggers and Mechanisms of Myocardial Infarction Study Group. N Engl J Med 1993; 329: 1684-1690
  • 65 Zinman B, Ruderman N, Campaigne BN et al. Physical activity/exercise and diabetes mellitus. Diabetes Care 2003; 26 (Suppl. 01) S73-S77
  • 66 Bhaskarabhatla KV, Birrer R. Physical activity and diabetes mellitus. Compr Ther 2005; 31: 291-298
  • 67 Kemmer FW, Tacken M, Berger M. Mechanism of exercise-induced hypoglycemia during sulfonylurea treatment. Diabetes 1987; 36: 1178-1182
  • 68 Gudat U, Bungert S, Kemmer F et al. The blood glucose lowering effects of exercise and glibenclamide in patients with type 2 diabetes mellitus. Diabet Med 1998; 15: 194-198