Aktuelle Neurologie 2016; 43(04): 242-248
DOI: 10.1055/s-0035-1555923
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Gene und Schmerz

Genes and Pain
C. Sommer
1   Neurologische Klinik, Universitätsklinikum Würzburg
,
K. Doppler
1   Neurologische Klinik, Universitätsklinikum Würzburg
› Author Affiliations
Further Information

Publication History

Publication Date:
13 August 2015 (online)

Zusammenfassung

Zur Genetik von Schmerzerkrankungen hat es in den letzten Jahren beträchtliche Fortschritte gegeben. Diese betreffen zum einen monogenetische Erkrankungen, die mit einer Schmerzerkrankung oder mit stark verminderter bis fehlender Schmerzempfindung einhergehen. Mutationen sind in den Genen für spannungsabhängige Natriumkanäle und in der Familie der Transient Receptor Potienzial Vanilloid (TRP) Rezeptoren entdeckt worden. Auf der anderen Seite gibt es Mutationen oder Gen-Polymorphismen, die im Zusammenspiel mit anderen Faktoren die Schmerzempfindlichkeit beeinflussen, hierzu gehören Polymorphismen in Enzymen, die die Funktion endogener Opioide beeinflussen. Genomweite Assoziationsstudien (GWAS) haben dazu beigetragen, neue Gene in Assoziation mit Schmerzphänotypen zu finden, deren Funktion zum Teil noch nicht bekannt ist.

Abstract

Considerable progress has been made in recent years in our understanding of the genetics of pain disorders. On the one hand, there are monogenic diseases that are associated with a pain disorder, or with greatly reduced or lack of pain sensation. Relevant mutations have been discovered in the genes for voltage-dependent sodium channels and in genes for transient receptor potential vanilloid (TRP) receptors. On the other hand, there are mutations or gene polymorphisms that, in interaction with other factors, affect pain sensitivity. These include polymorphisms that influence the function of endogenous opioids. Genome-wide association studies (GWAS) have helped to detect new genes in association with pain phenotypes, whose function is not yet fully known.

 
  • Literatur

  • 1 Yang Y, Wang Y, Li S et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 2004; 41: 171-174
  • 2 Dib-Hajj SD, Rush AM, Cummins TR et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 2005; 128: 1847-1854
  • 3 Michiels JJ, te Morsche RH, Jansen JB et al. Autosomal dominant erythermalgia associated with a novel mutation in the voltage-gated sodium channel alpha subunit Nav1.7. Arch Neurol 2005; 62: 1587-1590
  • 4 Cummins TR, Dib-Hajj SD, Waxman SG. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 2004; 24: 8232-8236
  • 5 Dib-Hajj SD, Yang Y, Black JA et al. The Na(V)1.7 sodium channel: from molecule to man. Nat Rev Neurosci 2013; 14: 49-62
  • 6 Rush AM, Dib-Hajj SD, Liu S et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci USA 2006; 103: 8245-8250
  • 7 Fertleman CR, Baker MD, Parker KA et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 2006; 52: 767-774
  • 8 Beck J, Cramp P, Noden J. Paroxysmal extreme pain disorder. Br J Anaesth 2013; 110: 850-851
  • 9 Zhang XY, Wen J, Yang W et al. Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 2013; 93: 957-966
  • 10 Devigili G, Tugnoli V, Penza P et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 2008; 131: 1912-1925
  • 11 Bednarik J, Vlckova-Moravcova E, Bursova S et al. Etiology of small-fiber neuropathy. J Peripher Nerv Syst 2009; 14: 177-183
  • 12 Faber CG, Hoeijmakers JG, Ahn HS et al. Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2012; 71: 26-39
  • 13 Faber CG, Lauria G, Merkies IS et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci USA 2012; 109: 19444-19449
  • 14 Huang J, Han C, Estacion M et al. Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain 2014; 137: 1627-1642
  • 15 Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci 2001; 2: 387-396
  • 16 Bennett DL, Woods CG. Painful and painless channelopathies. Lancet Neurol 2014; 13: 587-599
  • 17 Kremeyer B, Lopera F, Cox JJ et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 2010; 66: 671-680
  • 18 Weiss J, Pyrski M, Jacobi E et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 2011; 472: 186-190
  • 19 Cox JJ, Reimann F, Nicholas AK et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006; 444: 894-898
  • 20 Yuan J, Matsuura E, Higuchi Y et al. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology 2013; 80: 1641-1649
  • 21 Leipold E, Liebmann L, Korenke GC et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 2013; 45: 1399-1404
  • 22 Indo Y. Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA): mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor. Hum Mutat 2001; 18: 462-471
  • 23 Capsoni S. From genes to pain: nerve growth factor and hereditary sensory and autonomic neuropathy type V. Eur J Neurosci 2014; 39: 392-400
  • 24 Bondy B, Spaeth M, Offenbaecher M et al. The T102C polymorphism of the 5-HT2A-receptor gene in fibromyalgia. Neurobiol Dis 1999; 6: 433-439
  • 25 Mergener M, Becker RM, dos Santos AF et al. Influence of the interaction between environmental quality and T102C SNP in the HTR2A gene on fibromyalgia susceptibility. Rev Bras Reumatol 2011; 51: 594-602
  • 26 Skouen JS, Smith AJ, Warrington NM et al. Genetic variation in the beta-2 adrenergic receptor is associated with chronic musculoskeletal complaints in adolescents. Eur J Pain 2012; 16: 1232-1242
  • 27 Vargas-Alarcon G, Fragoso JM, Cruz-Robles D et al. Association of adrenergic receptor gene polymorphisms with different fibromyalgia syndrome domains. Arthritis Rheum 2009; 60: 2169-2173
  • 28 Schmechel DE, Edwards CL. Fibromyalgia, mood disorders, and intense creative energy: A1AT polymorphisms are not always silent. Neurotoxicology 2012; 33: 1454-1472
  • 29 Zubieta JK, Heitzeg MM, Smith YR et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 2003; 299: 1240-1243
  • 30 Rakvag TT, Klepstad P, Baar C et al. The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 2005; 116: 73-78
  • 31 De Gregori M, Garbin G, De Gregori S et al. Genetic variability at COMT but not at OPRM1 and UGT2B7 loci modulates morphine analgesic response in acute postoperative pain. Eur J Clin Pharmacol 2013; 69: 1651-1658
  • 32 Rakvag TT, Ross JR, Sato H et al. Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol Pain 2008; 4: 64
  • 33 Tammimaki A, Mannisto PT. Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics 2012; 22: 673-691
  • 34 de Vries B, Anttila V, Freilinger T et al. Systematic re-evaluation of genes from candidate gene association studies in migraine using a large genome-wide association data set. Cephalalgia 2015;
  • 35 Estacion M, Harty TP, Choi JS et al. A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol 2009; 66: 862-866
  • 36 Reimann F, Cox JJ, Belfer I et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sc. USA 2010; 107: 5148-5153
  • 37 Vargas-Alarcon G, Alvarez-Leon E, Fragoso JM et al. A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia. BMC musculoskeletal disorders 2012; 13: 23
  • 38 Reimann F, Cox JJ, Belfer I et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci USA 2010; 107: 5148-5153
  • 39 Valdes AM, Arden NK, Vaughn FL et al. Role of the Nav1.7 R1150W amino acid change in susceptibility to symptomatic knee osteoarthritis and multiple regional pain. Arthritis Care Res (Hoboken) 2011; 63: 440-444
  • 40 Holliday KL, Thomson W, Neogi T et al. The non-synonymous SNP, R1150W, in SCN9A is not associated with chronic widespread pain susceptibility. Mol Pain 2012; 8: 72
  • 41 Harrer JU, Uceyler N, Doppler K et al. Neuropathic pain in two-generation twins carrying the sodium channel Nav1.7 functional variant R1150W. Pain 2014; 155: 2199-2203
  • 42 Goldberg YP, Price N, Namdari R et al. Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 2012; 153: 80-85
  • 43 Bregman H, Berry L, Buchanan JL et al. Identification of a potent, state-dependent inhibitor of Nav1.7 with oral efficacy in the formalin model of persistent pain. J Med Chem 2011; 54: 4427-4445
  • 44 Chakka N, Bregman H, Du B et al. Discovery and hit-to-lead optimization of pyrrolopyrimidines as potent, state-dependent Na(v)1.7 antagonists. Bioorg Med Chem Lett 2012; 22: 2052-2062
  • 45 Zuliani V, Rapalli A, Patel MK et al. Sodium channel blockers: a patent review (2010 – 2014). Expert Opin Ther Pat 2015; 25: 279-290
  • 46 Oertel B, Lötsch J. Genetic mutations that prevent pain: implications for future pain medication. Pharmacogenomics 2008; 9: 179-194
  • 47 Rut M, Machoy-Mokrzynska A, Reclawowicz D et al. Influence of variation in the catechol-O-methyltransferase gene on the clinical outcome after lumbar spine surgery for one-level symptomatic disc disease: a report on 176 cases. Acta Neurochir (Wien) 2014; 156: 245-252
  • 48 Galvan A, Skorpen F, Klepstad P et al. Multiple Loci modulate opioid therapy response for cancer pain. Clin Cancer Res 2011; 17: 4581-4587
  • 49 Anttila V, Stefansson H, Kallela M et al. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet 2010; 42: 869-873
  • 50 Chasman DI, Schurks M, Anttila V et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 2011; 43: 695-698
  • 51 Esserlind AL, Christensen AF, Steinberg S et al. The association between candidate migraine susceptibility loci and severe migraine phenotype in a clinical sample. Cephalalgia 2015; Epub ahead of print
  • 52 Mogil JS, Diatchenko L, Fillingim RB. An Introduction to Pain Genetics. Washington: IASP Press; 2014. p 53 ff
  • 53 Sorge RE, Trang T, Dorfman R et al. Genetically determined P2×7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med 2012; 18: 595-599
  • 54 Nissenbaum J. From mouse to humans: discovery of the CACNG2 pain susceptibility gene. Clin Genet 2012; 82: 311-320
  • 55 Dib-Hajj SD, Waxman SG. Translational pain research: Lessons from genetics and genomics. Sci Transl Med 2014; 6 249sr4
  • 56 Trescot AM, Faynboym S. A review of the role of genetic testing in pain medicine. Pain Physician 2014; 17: 425-445
  • 57 Faber CG, Hoeijmakers JG, Ahn HS et al. Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2012; 71: 26-39
  • 58 Indo Y, Tsuruta M, Hayashida Y et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet 1996; 13: 485-488
  • 59 Einarsdottir E, Carlsson A, Minde J et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet 2004; 13: 799-805
  • 60 Drenth JP, Waxman SG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 2007; 117: 3603-3609