Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(17): 2442-2446
DOI: 10.1055/s-0035-1560179
DOI: 10.1055/s-0035-1560179
letter
Amino Acid Salt Catalyzed Asymmetric Synthesis of 1,2-Diols with A Quaternary Carbon Center
Further Information
Publication History
Received: 09 June 2015
Accepted after revision: 23 July 2015
Publication Date:
01 September 2015 (online)

Abstract
Enantioenriched 1,2-diols with a quaternary carbon center have great potential in the preparation of natural and biologically active compounds, but remain challenging synthetic targets which demand for both good diastereo- and enantioselectivity. As part of our continuous effort to explore the unique catalytic activities of amino acid salts in the asymmetric synthesis, herein, we wish to report an amino acid salt catalyzed direct aldol reaction between hydroxyacetone and α-keto esters, which afforded the 1,2-diols with a quaternary carbon center in high diastereo- and enantioselectivities.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560179.
- Supporting Information
-
References and Notes
- 1a Blaser HU. Chem. Rev. 1992; 92: 935
- 1b Hargaden GC, Guiry PJ. Chem. Rev. 2009; 109: 2505
- 1c Ager DJ, Prakash I, Schaad DR. Chem. Rev. 1996; 96: 835
- 2a Jarvo ER, Miller SJ. Tetrahedron 2002; 58: 2481
- 2b List B. Tetrahedron 2002; 58: 5573
- 2c Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 2d Pellissier H. Tetrahedron 2007; 63: 9267
- 2e Xu L.-W, Lu Y. Org. Biomol. Chem. 2008; 6: 2047
- 3a Mlynarski J, Paradowska J. Chem. Soc. Rev. 2008; 37: 1502
- 3b Darbre T, Machuqueiro M. Chem. Commun. 2003; 1090
- 3c Fernandez-Lopez R, Kofoed J, Machuqueiro M, Darbre T. Eur. J. Org. Chem. 2005; 5268
- 3d Kofoed J, Darbre T, Reymond JL. Chem. Commun. 2006; 1482
- 3e Itoh S, Kitamura M, Yamada Y, Aoki S. Chem. Eur. J. 2009; 15: 10570
- 3f Karmakar A, Maji T, Wittmann S, Reiser O. Chem. Eur. J. 2011; 17: 11024
- 3g Li P.-F, Yamamoto H. Chem. Commun. 2009; 5412
- 4a Yamaguchi M, Shiraishi T, Hirama M. Angew. Chem., Int. Ed. Engl. 1993; 32: 1176
- 4b Yamaguchi M, Shiraishi T, Hirama M. J. Org. Chem. 1996; 61: 3520
- 4c Sato A, Yoshida M, Hara S. Chem. Commun. 2008; 6242
- 4d Yoshida M, Narita M, Hirama K, Hara S. Tetrahedron Lett. 2009; 50: 7297
- 4e Yoshida M, Sato A, Hara S. Org. Biomol. Chem. 2010; 8: 3031
- 4f Yoshida M, Kitamikado N, Ikehara H, Hara S. J. Org. Chem. 2011; 76: 2305
- 4g Yoshida M, Hirama K, Narita M, Hara S. Symmetry 2011; 3: 155
- 4h Yoshida M, Narita M, Hara S. J. Org. Chem. 2011; 76: 8513
- 4i Yoshida M, Masaki E, Ikehara H, Hara S. Org. Biomol. Chem. 2012; 10: 5289
- 4j Xu K, Zhang S, Hu Y, Zha Z, Wang Z. Chem. Eur. J. 2013; 19: 3573
- 5 Liu XH, Qin B, Zhou X, He B, Feng XM. J. Am. Chem. Soc. 2005; 127: 12224
- 6a Liu H, Wu H, Luo Z, Shen J, Kang G, Liu B, Wan Z, Jiang J. Chem. Eur. J. 2012; 18: 11899
- 6b Kang G, Wu Q, Liu M, Xu Q, Chen Z, Chen W, Luo Y, Ye W, Jiang J, Wu H. Adv. Synth. Catal. 2013; 355: 315
- 6c Kang G, Luo Z, Liu C, Gao H, Wu Q, Wu H, Jiang J. Org. Lett. 2013; 15: 4738
- 7a Notz W, List B. J. Am. Chem. Soc. 2000; 122: 7386
- 7b Sakthivel K, Notz W, Bui T, Barbas CF. III. J. Am. Chem. Soc. 2001; 123: 5260
- 7c Tang Z, Yang ZH, Cun LF, Gong LZ, Mi AQ, Jiang YZ. Org. Lett. 2004; 6: 2285
- 7d Chen XH, Luo SW, Tang Z, Cun LF, Mi AQ, Jiang YZ, Gong LZ. Chem. Eur. J. 2007; 13: 689
- 7e Xu XY, Wang YZ, Gong LZ. Org. Lett. 2007; 9: 4247
- 7f Ramasastry SS. V, Zhang H, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2007; 129: 288
- 7g Luo S, Xu H, Li J, Zhang L, Cheng J.-P. J. Am. Chem. Soc. 2007; 129: 3074
- 7h Luo S, Xu H, Zhang L, Li J, Cheng J.-P. Org. Lett. 2008; 10: 653
- 7i Wu XY, Ma ZX, Ye ZQ, Qian S, Zhao G. Adv. Synth. Catal. 2009; 351: 158
- 7j Li J, Luo S, Cheng J.-P. J. Org. Chem. 2009; 74: 1747
- 7k Popik O, Pasternak-Suder M, Leśniak K, Jawiczuk M, Górecki M, Frelek J, Mlynarski J. J. Org. Chem. 2014; 79: 5728
- 8a Kokotos CG. J. Org. Chem. 2012; 77: 1131
- 8b Tanimura Y, Yasunaga K, Ishimaru K. Tetrahedron 2014; 70: 2816
- 8c Guo W, Wei J, Liu Y, Li C. Tetrahedron 2014; 70: 6561
- 8d Liu C, Dou X, Lu Y. Org. Lett. 2011; 13: 5248
- 9 General Experimental Procedures for the Synthesis of 4 α-Keto esters 3 (0.2 mmol), catalyst 1h (20 mol%), and dry DMF (0.5 mL) were added to a tube. The mixture was stirred at –10 °C for 10 min, then hydroxyacetone (2, 1 mmol) was added dropwise, and the resulting mixture was stirred at this temperature for specific time until the reaction was completed. The reaction mixture was purified through flash column chromatography on a silica gel (eluent: PE–EtOAc = 10:1 to 5:1) to yield the targeting products. Data of Compound 4e C15H20O5, 43.3 mg, 77% yield, white solid, 92% ee, 25:1 dr; [α]D 21 –0.8 (c 0.33 in CH2Cl2). HPLC: DAICEL CHIRALCEL AD-H, 2-PrOH–n-hexane= 15:85, flow rate = 1.0 mL/min, λ = 254 nm, t R (minor) = 8.8 min; t R (major) = 10.6 min. 1HNMR (500 MHz, CDCl3): δ = 7.80–7.82 (m, 2 H), 7.40–7.43 (m, 2 H), 7.34–7.37 (m, 1 H), 4.88 (d, J = 5 Hz, 1 H), 4.08–4.10 (m, 2 H), 1.58 (s, 3 H), 1.50 (s, 9 H). 13CNMR (126 MHz, CDCl3): δ = 27.8, 27.9, 80.2, 81.9, 84.4, 126.3, 128.4, 128.5, 137.9, 171.4, 205.2. IR (KBr): γ = 3497, 2974, 2352, 1716, 1252, 1162, 844, 751, 735, 700, 650 cm–1. HRMS (Micromass GCT–MS ESI): m/z calcd for [C15H20NaO5]+: 303.1208; found: 303.1217.
For a review on amino acid derived chiral oxazoline ligands in asymmetric catalysis, see:
For a review on amino acid derived amino alcohols as chiral auxiliaries in asymmetric synthesis, see:
For selected reviews, see:
For a review, see:
For selected examples, see:
For amino acid salts catalyzed Robinson annulation, see:
For selected examples, see:
For selected example of asymmetric aldol reaction between protected hydroxyacetone and β,γ-unsaturated α-keto esters, see: