Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(02): 282-286
DOI: 10.1055/s-0035-1560506
DOI: 10.1055/s-0035-1560506
letter
Brønsted Acid or Lewis Acid Catalyzed [3+3] Cycloaddition of Azomethine Imines with N-Benzyl Azomethine Ylide: A Facile Access to Bicyclic N-Heterocycles
Further Information
Publication History
Received: 08 August 2015
Accepted after revison: 20 September 2015
Publication Date:
30 October 2015 (online)
Abstract
1,3-Dipolar cycloaddition reactions are one of the most important methods to obtain diverse heterocycles with novel skeletons. We herein report the Brønsted acid or Lewis acid catalyzed [3+3] cycloaddition of azomethine imines with nonstabilized azomethine ylide generated in situ from an N-benzyl precursor, providing a clean and facile access to diverse bicyclic N-heterocycles in moderate to good yields for further biological testing. Also, the protocol developed achieved the formation of C–C and C–N bonds simultaneously in a single step.
Key words
cycloaddition - bicyclic N-heterocycles - azomethine imines - N-benzyl azomethine ylide - TFA - Zn(OTf)2Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035- 1560506.
- Supporting Information
-
References and Notes
- 1a Li M, Zhao B.-X. Eur. J. Med. Chem. 2014; 85: 311
- 1b Fustero S, Sanchez-Rosello M, Barrio P, Simon-Fuentes A. Chem. Rev. 2011; 111: 6984
- 1c Yet L. Prog. Heterocycl. Chem. 2013; 25: 217
- 2a Muehlebach M, Cederbaum F, Cornes D, Friedmann AA, Glock J, Hall G, Indolese AF, Kloer DP, Le Goupil G, Maetzke T, Meier H, Schneider R, Stoller A, Szczepanski H, Wendeborn S, Widmer H. Pest Manage. Sci. 2011; 67: 1499
- 2b Schumacher JN, Green CR, Best FW, Newell MP. J. Agric. Food Chem. 1977; 25: 310
- 2c Badran MM, Ismail MA. H, Abdu N, Abdel-Hakeem M. Alexandria J. Pharm. Sci. 1999; 13: 101
- 2d Song HY, Cho YR, Lee DY, Park HS, Baek SY, Chae SE, Cho SH, Kim YO, Lee HS, Park JH, Park TG, Woo SH, Kim YJ. KR 200864178, 2009 ; Chem. Abstr. 2009, 151, 626744
- 2e Kamata M, Yamashita T, Kina A, Tawada M, Endo S, Mizukami A, Sasaki M, Tani A, Nakano Y, Watanabe Y, Furuyama N, Funami M, Amano N, Fukatsu K. Bioorg. Med. Chem. Lett. 2012; 22: 4769
- 2f Schatz F, Wagner-Jauregg T. Helv. Chim. Acta 1968; 51: 1919
- 2g Zhu L, Younes AH, Yuan Z, Clark RJ. J. Photochem. Photobiol., A 2015; 311: 1
- 2h Zhu L, Yuan Z, Simmons JT, Sreenath K. RSC Adv. 2014; 4: 20398
- 2i Kosower EM, Giniger R, Radkowsky A, Hebel D, Shusterman A. J. Phys. Chem. 1986; 90: 5552
- 2j Jungheim LN, Sigmund SK, Fisher JW. Tetrahedron Lett. 1987; 28: 285
- 2k Ternansky RJ, Draheim SE. Tetrahedron Lett. 1990; 31: 2805
- 3a Greenwald RB, Taylor EC. J. Am. Chem. Soc. 1968; 90: 5273
- 3b Chuang T.-H, Sharpless KB. Helv. Chim. Acta 2000; 83: 1734
- 3c Shintani R, Fu GC. J. Am. Chem. Soc. 2003; 125: 10778
- 3d Pezdirc L, Jovanovski V, Bevk D, Jakse R, Pirc S, Meden A, Stanovnik B, Svete J. Tetrahedron 2005; 61: 3977
- 3e Suarez A, Downey CW, Fu GC. J. Am. Chem. Soc. 2005; 127: 11244
- 3f Chen W, Yuan X.-H, Li R, Du W, Wu Y, Ding L.-S, Chen Y.-C. Adv. Synth. Catal. 2006; 348: 1818
- 3g Chen W, Du W, Duan Y.-Z, Wu Y, Yang S.-Y, Chen Y.-C. Angew. Chem. Int. Ed. 2007; 46: 7667
- 3h Pezdirc L, Bevk D, Groselj U, Meden A, Stanovnik B, Svete J. J. Comb. Chem. 2007; 9: 717
- 3i Suga H, Funyu A, Kakehi A. Org. Lett. 2007; 9: 97
- 3j Kato T, Fujinami S, Ukaji Y, Inomata K. Chem. Lett. 2008; 37: 342
- 3k Sibi MP, Rane D, Stanley LM, Soeta T. Org. Lett. 2008; 10: 2971
- 3l Keller M, Sido AS. S, Pale P, Sommer J. Chem. Eur. J. 2009; 15: 2810
- 3m Oishi T, Yoshimura K, Yamaguchi K, Mizuno N. Chem. Lett. 2010; 39: 1086
- 3n Tanaka K, Kato T, Fujinami S, Ukaji Y, Inomata K. Chem. Lett. 2010; 39: 1036
- 3o Tanaka K, Kato T, Ukaji Y, Inomata K. Heterocycles 2010; 80: 887
- 3p Luo N, Zheng Z, Yu Z. Org. Lett. 2011; 13: 3384
- 3q Yoshimura K, Oishi T, Yamaguchi K, Mizuno N. Chem. Eur. J. 2011; 17: 3827
- 3r Imaizumi T, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2012; 134: 20049
- 3s Zhou W, Li X.-X, Li G.-H, Wu Y, Chen Z. Chem. Commun. 2013; 49: 3552
- 3t Li Z, Yu H, Liu H, Zhang L, Jiang H, Wang B, Guo H. Chem. Eur. J. 2014; 20: 1731
- 4a Shintani R, Hayashi T. J. Am. Chem. Soc. 2006; 128: 6330
- 4b Chan A, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334
- 4c Shapiro ND, Shi Y, Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
- 4d Fang X, Li J, Tao H.-Y, Wang C.-J. Org. Lett. 2013; 15: 5554
- 4e Guo H, Liu H, Zhu F.-L, Na R, Jiang H, Wu Y, Zhang L, Li Z, Yu H, Wang B, Xiao Y, Hu X.-P, Wang M. Angew. Chem. Int. Ed. 2013; 52: 12641
- 4f Qian Y, Zavalij PJ, Hu W, Doyle MP. Org. Lett. 2013; 15: 1564
- 4g Tong M.-C, Chen X, Tao H.-Y, Wang C.-J. Angew. Chem. Int. Ed. 2013; 52: 12377
- 4h Xu X, Qian Y, Zavalij PY, Doyle MP. J. Am. Chem. Soc. 2013; 135: 1244
- 4i Zhu G, Sun W, Wu C, Li G, Hong L, Wang R. Org. Lett. 2013; 15: 4988
- 4j Du J, Xu X, Li Y, Pan L, Liu Q. Org. Lett. 2014; 16: 4004
- 5a Na R, Jing C, Xu Q, Jiang H, Wu X, Shi J, Zhong J, Wang M, Benitez D, Tkatchouk E, Goddard WA, Guo H, Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
- 5b Wang M, Huang Z, Xu J, Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
- 6 For selected examples of [3+2+1] cycloaddition, see: Xu X, Xu X, Zavalij PY, Doyle MP. Chem. Commun. 2013; 49: 2762
- 7a Padwa A, Dent W. J. Org. Chem. 1987; 52: 235
- 7b Kibayashi C, Yamazaki N. Sci. Synth. 2007; 30: 587
- 7c Kibayashi C, Yamazaki N. Sci. Synth. 2007; 30: 7
- 7d Terao Y, Kotaki H, Imai N, Achiwa K. Chem. Pharm. Bull. 1985; 33: 2762
- 7e Terao Y, Kotaki H, Imai N, Achiwa K. Chem. Pharm. Bull. 1985; 33: 896
- 7f Padwa A, Dent W. Org. Synth. 1989; 67: 133
- 7g Reed AD, Hegedus LS. J. Org. Chem. 1995; 60: 3787
- 7h Fray AH, Meyers AI. J. Org. Chem. 1996; 61: 3362
- 7i Gerlach K, Hoffmann HM. R, Wartchow R. J. Chem. Soc., Perkin Trans. 1 1998; 3867
- 7j Yu B, Shi X.-J, Qi P.-P, Yu D.-Q, Liu H.-M. J. Steroid Biochem. Mol. Biol. 2014; 141: 121
- 7k Karlsson S, Hoegberg H.-E. J. Chem. Soc., Perkin Trans. 1 2002; 1076
- 7l Trost BM, Crawley ML. Chem. Eur. J. 2004; 10: 2237
- 7m Kotian PL, Lin T.-H, El-Kattan Y, Chand P. Org. Process Res. Dev. 2005; 9: 193
- 7n Kurkin AV, Sumtsova EA, Yurovskaya MA. Chem. Heterocycl. Compd. 2007; 43: 34
- 7o Yohannes D, Procko K, Lebel LA, Fox CB, O'Neill BT. Bioorg. Med. Chem. Lett. 2008; 18: 2316
- 7p Boga SB, Alhassan A.-B, Cooper AB, Shih N.-Y, Doll RJ. Tetrahedron Lett. 2009; 50: 5315
- 7q Baumann M, Baxendale IR, Kuratli C, Ley SV, Martin RE, Schneider J. ACS Comb. Sci. 2011; 13: 405
- 7r D’Souza AM, Spiccia N, Basutto J, Jokisz P, Wong LS. M, Meyer AG, Holmes AB, White JM, Ryan JH. Org. Lett. 2011; 13: 486
- 7s Yarmolchuk VS, Mukan IL, Grygorenko OO, Tolmachev AA, Shishkina SV, Shishkin OV, Komarov IV. J. Org. Chem. 2011; 76: 7010
- 7t Pandiancherri S, Ryan SJ, Lupton DW. Org. Biomol. Chem. 2012; 10: 7903
- 7u Cai C, Kang F.-A, Beauchamp DA, Sui Z, Russell RK, Teleha CA. Tetrahedron: Asymmetry 2013; 24: 651
- 7v Lee S, Diab S, Queval P, Sebban M, Chataigner I, Piettre SR. Chem. Eur. J. 2013; 19: 7181
- 7w Moshkin VS, Sosnovskikh VY. Tetrahedron Lett. 2013; 54: 5869
- 7x Lee S, Chataigner I, Piettre SR. Angew. Chem. Int. Ed. 2011; 50: 472
- 8 General Procedure for the [3+3] Annulation Reaction of N-Benzyl-Substituted Compound 1 and Azomethine Imines 3 To a solution of azomethine imines 3 (0.02 mmol) and N-benzyl-substituted compound 1 (0.03 mmol, 1.5 equiv) at 0 °C in CH2Cl2 (2 mL) was added acid catalyst (0.002 mmol, 0.1 equiv), the reaction mixture was stirred in refrigerated precision water baths at 10 °C for 72 h (depending on TLC monitor), N-benzyl-substituted compound 1 (0.05 mmol, 2.5 equiv) was added during this period. After the completion of the reaction, the reaction mixture was cooled to 0 °C, and was diluted with sat. NaHCO3 solution. The filtrate was concentrated under vacuum and purified by flash column (hexane–EtOAc, 1:9) to give the product 4.
- 9 Selected Spectral Data for Compound 4a Yield 71% for TFA-catalyzed reaction [70% yield for Zn(OTf)2-catalyzed reaction]; white solid. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.27 (m, 10 H), 4.91 (d, J = 11.3 Hz, 1 H), 3.78–3.68 (m, 4 H), 3.36–3.25 (m, 1 H), 2.96–2.89 (m, 1 H), 2.84–2.75 (m, 1 H), 2.69–2.60 (m, 2 H), 2.50–2.39 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 170.35, 138.03, 137.03, 129.04, 128.75, 128.52, 128.33, 127.74, 127.52, 66.99, 61.58, 58.68, 57.61, 47.96, 30.09. IR (film): νmax = 3029, 2924, 2844, 1695, 1602, 1494, 1453, 1410, 1328, 1280, 1129, 1065, 1027, 929, 979, 758, 100, 633, 569, 529, 498, 466 cm–1. HRMS (MALDI): m/z calcd for C19H22N3O+ [M + H]+: 308.1757; found: 308.1763.
For selected reviews, see:
For some selected examples of bicyclic N-heterocycles, see:
For some selected examples of [3+2] cycloaddtion, see:
For some selected examples of [3+3] cycloaddtion, see:
For some selected examples of [4+3] cycloaddtion, see:
For selected examples of [3+2] cycloaddition of N-benzyl azomethine ylide, see: