Synlett 2016; 27(13): 1936-1940
DOI: 10.1055/s-0035-1561458
letter
© Georg Thieme Verlag Stuttgart · New York

Gold-Catalyzed Synthesis of 2-Substituted Azepanes: Strategic Use of Soft Gold(I) and Hard Gold(III) Catalysts

Nobuyoshi Morita*
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan   Email: morita@ac.shoyaku.ac.jp   Email: tamura@ac.shoyaku.ac.jp
,
Yuta Saito
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan   Email: morita@ac.shoyaku.ac.jp   Email: tamura@ac.shoyaku.ac.jp
,
Ayumi Muraji
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan   Email: morita@ac.shoyaku.ac.jp   Email: tamura@ac.shoyaku.ac.jp
,
Shintaro Ban
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan   Email: morita@ac.shoyaku.ac.jp   Email: tamura@ac.shoyaku.ac.jp
,
Yoshimitsu Hashimoto
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan   Email: morita@ac.shoyaku.ac.jp   Email: tamura@ac.shoyaku.ac.jp
,
Iwao Okamoto
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan   Email: morita@ac.shoyaku.ac.jp   Email: tamura@ac.shoyaku.ac.jp
,
Osamu Tamura*
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan   Email: morita@ac.shoyaku.ac.jp   Email: tamura@ac.shoyaku.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 27 March 2016

Accepted after revision: 26 April 2016

Publication Date:
02 June 2016 (online)


Abstract

Strategic use of both soft gold(I) and hard gold(III) catalysts provides azepanes from propargylic alcohols in one pot. Thus, propargylic alcohols in the presence of soft gold(I) catalyst (Ph3PAuNTf2) undergo a Meyer–Schuster rearrangement to give α,β-unsaturated ketones, which in turn undergo a gold(III) (AuBr3)-catalyzed aza-Michael addition to afford azepanes bearing a carbonyl group.

Supporting Information

 
  • References and Notes

  • 1 Vaquero JJ, Cuadro AM, Herradón B. Modern Heterocyclic Chemistry. Alvarez-Builla J, Vaquero J, Barluenga J. Wiley-VCH Verlag GmbH; Weinheim: 2011. 1st ed., 1865
  • 5 Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845

    • For ring expansion reaction of cyclic compounds, see:
    • 8a René O, Stepek IA, Gobbi A, Fauber BP, Gaines S. J. Org. Chem. 2015; 80: 10218
    • 8b Nortcliffe A, Moody CJ. Bioorg. Med. Chem. 2015; 23: 2730
    • 8c Zhou J, Yeung Y.-Y. Org. Lett. 2014; 16: 2134
    • 8d Wishka DG, Bédard M, Brighty KE, Buzon RA, Farley KA, Fichtner MW, Kauffman GS, Kooistra J, Lewis JG, O’Dowd H, Samardjiev IJ, Samas B, Yalamanchi G, Noe MC. J. Org. Chem. 2011; 76: 1937
    • 8e Chong H.-S, Ganguly B, Broker GA, Rogers RD, Brechbiel MW. J. Chem. Soc., Perkin Trans. 1 2002; 2080

      There are some examples of construction of azepane via aza-Michael addition of conformationally constrained substrates in the total synthesis of natural products. For selected reports, see:
    • 11a Li W.-DZ, Duo W.-G, Zhuang C.-H. Org. Lett. 2011; 13: 3538
    • 11b Shah U, Chackalamannil S, Ganguly AK, Chelliah M, Kolotuchin S, Buevich A, McPhail A. J. Am. Chem. Soc. 2006; 128: 12654

    • For reviews of aza-Michael addition, see:
    • 11c Amara Z, Caron J, Joseph D. Nat. Prod. Rep. 2013; 30: 1211
    • 11d Enders D, Wang C, Liebich JX. Chem. Eur. J. 2009; 15: 11058
    • 11e Xu L.-W, Xia C.-G. Eur. J. Org. Chem. 2005; 633

    • For selected example of intramolecular aza-Michael addition, see:
    • 11f Cheng S, Yu S. Org. Biomol. Chem. 2014; 12: 8607

      For examples of synthesis of azepane from highly flexible linear compounds, see:
    • 12a Cini E, Bifulco G, Menchi G, Rodriquez M, Taddei M. Eur. J. Org. Chem. 2012; 2133
    • 12b Ito H, Harada T, Ohmiya H, Sawamura M. Beilstein J. Org. Chem. 2011; 7: 951
    • 12c Denmark SE, Xie M. J. Org. Chem. 2007; 72: 7050
  • 16 For aldol condensation, see: Machajewski TD, Wong C.-H. Angew. Chem. Int. Ed. 2000; 39: 1352
  • 18 Morita N, Yasuda A, Shibata M, Ban S, Hashimoto Y, Okamoto I, Tamura O. Org. Lett. 2015; 17: 2668
  • 19 Morita N, Tsunokake T, Narikiyo Y, Harada M, Tachibana T, Saito Y, Ban S, Hashimoto Y, Okamoto I, Tamura O. Tetrahedron Lett. 2015; 56: 6269
  • 21 We chose propargylic alcohol protected by sulfonyl group (Ts) in this reaction because the synthesis of piperidines was achieved from propargylic alcohols protected by sulfonyl (Ms, Ts and Ns) and tert-butoxycarbonyl groups (Boc) in our previous work (see ref. 19). The reaction of substrates protected by the sulfonyl group (Ms, Ts and Ns) proceeded smoothly for 1d to afford the corresponding piperidines, whereas the reaction of substrate protected by tert-butoxycarbonyl group (Boc) proceeded with longer reaction periods of 4 d, to furnish the corresponding piperidine.
  • 22 Procedure for the Synthesis of 1-Phenyl-2-(1-tosylazepan-2-yl)ethan-1-one (9a): [Ph3PAuNTf2]2PhMe (2.2 mg, 1.0 mol%) was added at r.t. to a solution of propargylic alcohol 7a (50 mg, 0.13 mmol) and MeOH (5.7 μL, 0.14 mmol) in toluene (5 mL). After complete consumption of propargylic alcohol 7a (the reaction was monitored by TLC; 1 d), AuBr3 (3.0 mg, 5.0 mol%) was added to the reaction solution at r.t. After stirring for 1 d, the solvent was removed in vacuo and the crude product was subjected to column chromatography on silica gel (hexane–Et2O, 1:1) to give 1-phenyl-2-(1-tosylazepan-2-yl)ethan-1-one (9a; 43 mg, 86%) as a colorless oil. IR (KBr): 2928, 2856, 1682, 1597, 1331, 1152, 1090, 949, 880 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.92 (dd, J = 6.9, 1.5 Hz, 2 H), 7.74 (dd, J = 8.4, 1.8 Hz, 2 H), 7.54–7.60 (m, 1 H), 7.43–7.49 (m, 2 H), 7.24 (d, J = 7.5 Hz, 2 H), 4.30–4.40 (m, 1 H), 3.92 (dt, J = 15.0, 3.6 Hz, 1 H), 3.38 (dd, J = 15.3, 3.6 Hz, 1 H), 3.09 (ddd, J = 15.3, 11.1, 2.7 Hz, 1 H), 3.00 (dd, J = 15.3, 9.6 Hz, 1 H), 2.37 (s, 3 H), 2.04–2.14 (m, 1 H), 1.47–1.69 (m, 4 H), 1.15–1.39 (m, 2 H), 0.95–1.07 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 198.0, 143.0, 138.5, 136.5, 133.2, 129.6, 128.6, 128.2, 127.2, 54.4, 45.1, 43.9, 34.5, 29.2, 29.1, 24.4, 21.4. HRMS (FAB): m/z [M + H]+ calcd for C21H26NO3S: 372.1628; found: 372.1622.
  • 24 Procedure for the Synthesis of 1-(4-Methoxyphenyl)-2-(1-tosylazepan-2-yl)ethan-1-one (9b): [Ph3PAuNTf2]2PhMe (1.6 mg, 1.0 mol%) was added at r.t. to a solution of propargylic alcohol 7b (40 mg, 0.10 mmol) and MeOH (4.1 μL, 0.09 mmol) in toluene (5 mL). After stirring for 1 d at r.t., AuBr3 (2.2 mg, 5.0 mol%) was added to the reaction solution at r.t. After stirring for 1 d at 60 °C, the solvent was removed in vacuo and the crude product was subjected to column chromatography on silica gel (hexane–Et2O, 1:1) to give 1-(4-methoxyphenyl)-2-(1-tosylazepan-2-yl)ethan-1-one (9b; 30 mg, 75%) as a colorless oil. IR (KBr): 2930, 2856, 1672, 1601, 1329, 1261, 1151, 1090, 816 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.92 (dd, J = 8.7, 1.8 Hz, 2 H), 7.75 (d, J = 8.1 Hz, 2 H), 7.25 (d, J = 8.1 Hz, 2 H), 6.94 (dd, J = 8.7, 1.8 Hz, 2 H), 4.28–4.38 (m, 1 H), 3.80–3.95 (m, 1 H), 3.88 (s, 3 H), 3.36 (dd, J = 15.0, 3.6 Hz, 1 H), 3.08 (ddd, J = 15.3, 10.8, 2.1 Hz, 1 H), 2.79 (dd, J = 15.0, 9.9 Hz, 1 H), 2.39 (s, 3 H), 2.02–2.12 (m, 1 H), 1.45–1.72 (m, 4 H), 1.12–1.39 (m, 2 H), 0.93–1.04 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 196.5, 163.6, 143.0, 138.6, 130.6, 129.7, 129.6, 127.2, 113.8, 55.5, 54.7, 44.9, 43.8, 34.4, 29.2, 29.0, 24.3, 21.5. HRMS (FAB): m/z [M + H]+ calcd for C22H28NO4S: 402.1734; found: 402.1747.