Synlett 2016; 27(13): 2009-2013
DOI: 10.1055/s-0035-1562235
letter
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalyzed Asymmetric Hydrogenation of N-(1-benzylpiperidin-3-yl)-enamides: An Efficient Access to Valuable Enantioenriched 3-Aminopiperidine Derivatives

Titouan Royal
a   PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: virginie.vidal@chimie-paristech.fr
,
Yohan Dudognon
a   PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: virginie.vidal@chimie-paristech.fr
,
Farouk Berhal
a   PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: virginie.vidal@chimie-paristech.fr
,
Yvon Bastard
b   Orgapharm, 25 Rue du Moulin de la Canne 45300 Pithiviers, France
,
Bernard Boudet*
b   Orgapharm, 25 Rue du Moulin de la Canne 45300 Pithiviers, France
,
Tahar Ayad
a   PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: virginie.vidal@chimie-paristech.fr
,
Virginie Ratovelomanana-Vidal*
a   PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: virginie.vidal@chimie-paristech.fr
› Author Affiliations
Further Information

Publication History

Received: 08 March 2016

Accepted after revision: 23 April 2016

Publication Date:
19 May 2016 (online)


Abstract

An efficient synthetic entry to enantioenriched 3-aminopiperidine derivatives using rhodium-catalyzed asymmetric hydrogenation of N-(1-benzylpiperidin-3-yl)enamides is described. This method provides an atom-economical and attractive route to both enantiomers of the valuable 3-aminopiperidine moiety, which is an important structural unit that can be found in many natural products and pharmaceutical drugs encompassing a broad range of biological activities. Under optimized reaction conditions, the targeted 3-aminopiperidine derivatives were obtained in high yields up to 92% and with enantiomeric excesses up to 96% after a single crystallization.

 
  • References and Notes


    • For representative examples, see:
    • 1a Dax SL, Wei CC. J. Org. Chem. 1992; 57: 744
    • 1b Bouzard D, Di Cesare PD, Essiz M, Jacquet J.-P, Ledoussal B, Remuzon P, Kessler RE, Fung-Tomc J. J. Med. Chem. 1992; 35: 518
    • 1c Tattersall FD, Rycroft W, Hill RG, Hargreaves RJ. Neuropharmacology 1994; 33: 259
    • 1d Lin H.-S, Richett ME. WO 9952265, 1999 ; Chem. Abstr. 1999, 131, 295575
    • 1e Alcaraz L, Furber M, Mortimore M. WO 0061569, 2000 ; Chem. Abstr. 2000, 133, 309908a
    • 1f Ishikawa M, Kubota D, Yamamoto M, Kuroda C, Iguchi M, Koyanagi A, Murakami S, Ajito K. Bioorg. Med. Chem. 2006; 14: 2109
    • 1g Eckhardt M, Langkopf E, Mark M, Tadayyon M, Thomas L, Nar H, Pfrengle W, Guth B, Lotz R, Sieger P, Fuchs H, Himmelsbach F. J. Med. Chem. 2007; 50: 6450
    • 1h Graul AI, Cruces E. Drugs Today 2011; 47: 27
    • 1i Berggren K, Vindebro R, Bergström C, Spoerry C, Persson H, Fex T, Kihlberg J, Pawel-Rammingen U.-V, Luthman K. J. Med. Chem. 2012; 55: 2549
    • 1j Oza V, Ashwell S, Almeida L, Brassil P, Breed J, Deng C, Gero T, Grondine M, Horn C, Ioannidis S, Liu D, Lyne P, Newcombe N, Pass M, Read J, Ready S, Rowsell S, Su M, Toader D, Vasbinder M, Yu D, Yu Y, Xue Y, Zabludoff S, Janetka J. J. Med. Chem. 2012; 55: 5130
  • 2 Feng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB, Navre M, Shi L, Skene RJ, Asakawa T, Takeuchi K, Xu R, Webb DR, Gwaltney SL. J. Med. Chem. 2007; 50: 2298
  • 3 Lajara R. Expert Opin. Pharmacother. 2012; 13: 2663
  • 4 Flanagan ME, Blumenkopf TA, Brissette WH, Brown MF, Casavant JM, Shang-Poa C, Doty JL, Elliott EA, Fisher MB, Hines M, Kent C, Kudlacz EM, Lillie BM, Magnuson KS, McCurdy SP, Munchhof MJ, Perry BD, Sawyer PS, Strelevitz TJ, Subramanyam C, Sun J, Whipple DA, Changelianr PS. J. Med. Chem. 2010; 53: 8468
  • 5 Ishikawa M, Hiraiwa Y, Kubota D, Tsushima M, Watanabe T, Murakami S, Ouchi S, Ajito K. Bioorg. Med. Chem. 2006; 14: 2131

    • For selected examples, see:
    • 6a Diez A, Voldoire A, López I, Rubiralta M, Segarra V, Pagès L, Palacios JM. Tetrahedron 1995; 51: 5143
    • 6b Jean L, Baglin I, Rouden J, Maddaluno J, Lasne M.-C. Tetrahedron Lett. 2001; 42: 5645
    • 6c Hu XE, Kim NK, Ledoussal B. Org. Lett. 2002; 4: 4499
    • 6d Reilly M, Anthony DR, Gallagher C. Tetrahedron Lett. 2003; 44: 2927
    • 6e Brown Ripin DH. WO 2004046112, 2004
    • 6f Brown Ripin DH, Abele S, Cai W, Blumenkopf T, Casavant JM, Doty JL, Flanagan M, Koecher C, Laue KW, McCarthy K, Meltz C, Munchhoff M, Pouwer K, Shah B, Sun J, Teixeira J, Vries T, Whipple DA, Wilcox G. Org. Process Res. Dev. 2003; 7: 115
    • 6g Cai W, Colony JL, Frost H, Hudspeth JP, Kendall PM, Krishnan AM, Makowski T, Mazur DJ, Phillips J, Brown Ripin DH, Ruggeri SG, Stearns JF, White TD. Org. Process Res. Dev. 2005; 9: 51
    • 6h Cox JM, Harper B, Mastracchio A, Leiting B, Sinha Roy R, Patel RA, Wu JK, Lyons KA, He H, Xu S, Zhu B, Thornberry NA, Weber AE, Edmondson SD. Bioorg. Med. Chem. Lett. 2007; 17: 4579
    • 6i Martini E, Ghelardini C, Dei S, Guandalini L, Manetti D, Melchiorre M, Norcini M, Scapecchi S, Teodori E, Romanelli MN. Bioorg. Med. Chem. 2008; 16: 1431
    • 6j Rao TS, Zhang C. WO 2010123919, 2010
    • 6k Cochi A, Gomez Pardo D, Cossy J. Org. Lett. 2011; 13: 4442
    • 6l Cochi A, Gomez Pardo D, Cossy J. Eur. J. Org. Chem. 2012; 2023
    • 6m Patil YS, Bonde NL, Kekan AS, Sathe DG, Das A. Org. Process Res. Dev. 2014; 18: 1714
    • 9a Duprat de Paule S, Champion N, Ratovelomanana-Vidal V, Genêt J.-P, Dellis P. FR 2830254, 2001
    • 9b Duprat de Paule S, Champion N, Ratovelomanana-Vidal V, Genêt J.-P, Dellis P. WO 03029259, 2003
    • 9c Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Eur. J. Org. Chem. 2003; 1931
    • 9d Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Deschaux G, Dellis P. Org. Process Res. Dev. 2003; 7: 399
  • 10 The absolute configuration was determined to be R by comparison of the specific rotation of the 3-aminopiperidine dihydrochloride ([α]D 20 –3.7 (c 1, H2O) for 96% ee) obtained from 2a after full deprotection with commercially available (R)-(–)-3-aminopiperidine dihydrochloride from Sigma-Aldrich ([α]D 20 –2.0 ± 0.5 (c 1, H2O) for 90% ee).
  • 11 Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R. J. Am. Chem. Soc. 1980; 102: 7932
  • 12 Schmid R, Broger EA, Cereghetti M, Crameri Y, Foricher J, Lalonde M, Müller RK, Scalone M, Schoettel G, Zutter U. Pure Appl. Chem. 1996; 68: 131
  • 14 Typical Procedure for the Asymmetric Hydrogenation of 1a The rhodium complex [Rh(cod)2]+BF4 (3.0 mg, 0.0074 mmol, 1% mol) and the (S)-SYNPHOS ligand (0.0081 mmol, 1.1% mol) were placed in a tubular reactor under argon. THF was added (3 mL), and the solution was stirred at room temperature for 30 min after three vacuum/argon cycles. The enamide 1a (1 equiv) was then added in one portion, and the reactor was put in a stainless steel autoclave after three vacuum/argon cycles. The hydrogenation was performed at 50 °C under 20 bar of hydrogen pressure for 40 h. After careful releasing of the hydrogen gas, the reaction mixture was concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel to give the 3-aminopiperidine derivative (R)-2a. N-(1-Benzylpiperidin-3-yl)benzamide [(R)-2a] White solid; yield 270.5 mg (92%); mp 133 °C; Rf = 0.4 (EtOAc); [α]D 20 +2.6 (c 1, MeOH). 1H NMR (300 MHz, CDCl3): δ = 7. 79 (t, J = 7.8 Hz, 2 H), 7.55–7.39 (m, 3 H), 7.39–7.18 (m, 5 H), 6.87 (s, 1 H), 4.28 (s, 1 H), 3.58 (d, J = 13.0 Hz, 1 H), 3.47 (d, J = 13.1 Hz, 1 H), 2.60–2.70 (m, 2 H), 2.52–2.13 (m, 2 H), 1.63–1.80 (m, 2 H), 1.61–1.42 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 155.6, 136.7, 129.1, 128.5, 128.3, 128.2, 128.1, 127.3, 66.5, 63.0, 58.2, 53.4, 46.7, 29.3, 21.8. MS (CI, NH3): m/z = 295 [M + H]+. HRMS (ESI+): m/z [M + Na]+ calcd for C19H22N2ONa+: 317.1630; found: 317.1624. The enantiomeric excess of (R)-2a was determined by SFC (Chiralcel AD-H, scCO2/MeOH = 90:10 + 0.1% Et3N, 4 mL/min, P = 150 bar, λ = 215 nm): t R (S) = 5.76 min (minor), t R (R) = 7.17 min (major, ee 92.5%), upgraded to 96% ee after a single crystallization in EtOH.