Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(06): 673-678
DOI: 10.1055/s-0036-1588363
DOI: 10.1055/s-0036-1588363
letter
Thieme Chemistry Journals Awardees – Where Are They Now?
Stereoselective Cycloaddition of 2,2,2-Trifluorodiazoethane with α-Methylene-β-lactams: Facile Synthesis of Trifluoromethyl-Substituted Spirocyclic β-Lactams
Further Information
Publication History
Received: 11 October 2016
Accepted after revision: 06 November 2016
Publication Date:
28 November 2016 (online)
Abstract
The cycloadditions of 2,2,2-trifluorodiazoethane with α-methylene-β-lactams were investigated. The reaction proceeded via a [3+2] cycloaddition mode under metal-free conditions, whereas the use of an iron catalyst enabled a cyclopropanation to occur. This protocol offers a facile access to a broad range of trifluoromethyl containing spirocyclic β-lactams.
Key words
2,2,2-trifluorodiazoethane - α-methylene-β-lactam - spirocyclic β-lactam - [3+2] cycloaddition - cyclopropanationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588363.
- Supporting Information
-
References and Notes
- 1a Alcaide B, Almendros P In Heterocyclic Scaffolds I: β-Lactams . Banik KB. Springer; Berlin/Heidelberg: 2010: 1
- 1b Bari SS, Bhalla A In Heterocyclic Scaffolds I: β-Lactams . Banik KB. Springer; Berlin/Heidelberg: 2010: 49
- 1c Singh GS, D’hooghe M, De Kimpe N. Tetrahedron 2011; 67: 1989
- 2a Skiles JW, McNeil D. Tetrahedron Lett. 1990; 31: 7277
- 2b Turos E, Long TE, Heldreth B, Leslie JM, Reddy GS. K, Wang Y, Coates C, Konaklieva M, Dickey S, Lim DV, Alonso E, Gonzalez J. Bioorg. Med. Chem. Lett. 2006; 16: 2084
- 3a Dugar S, Clader JW, Chan T.-M, Davis H. J. Med. Chem. 1995; 38: 4875
- 3b Chen L.-Y, Zaks A, Chackalamannil S, Dugar S. J. Org. Chem. 1996; 61: 8341
- 3c Wu G, Tormos W. J. Org. Chem. 1997; 62: 6412
- 3d Kambara T, Tomioka K. J. Org. Chem. 1999; 64: 9282
- 3e Benfatti F, Cardillo G, Gentilucci L, Tolomelli A. Bioorg. Med. Chem. Lett. 2007; 17: 1946
- 4a Alonso E, López-Ortiz F, del Pozo C, Peralta E, Macías A, González J. J. Org. Chem. 2001; 66: 6333
- 4b Bittermann H, Gmeiner P. J. Org. Chem. 2006; 71: 97
- 5a Gürtler S, Johner M, Ruf S, Otto H.-H. Helv. Chim. Acta 1993; 76: 2958
- 5b Strauss A, Otto H.-H. Helv. Chim. Acta 1997; 80: 1823
- 6 Basak A, Bdour HM. M, Bhattacharya G. Tetrahedron Lett. 1997; 38: 2535
- 7 Anklam S, Liebscher J. Tetrahedron 1998; 54: 6369
- 8a Arkhipov AV, Arkhipov VV, Cossy J, Kovtunenko VO, Mykhailiuk PK. Org. Lett. 2016; 18: 3406
- 8b Guo R, Zheng Y, Ma J.-A. Org. Lett. 2016; 18: 4170 For a recent review about nitrogen-group-retaining reactions in the transformation of diazo compounds, see:
- 8c Qiu D, Qiu M, Ma R, Zhang Y, Wang J. Acta Chim. Sin. (Engl. Ed.) 2016; 74: 472
- 9a Le Maux P, Juillard S, Simonneaux G. Synthesis 2006; 1701
- 9b Mykhailiuk PK, Afonin S, Palamarchuk GV, Shishkin OV, Ulrich AS, Komarov IV. Angew. Chem. Int. Ed. 2008; 47: 5765
- 9c Mykhailiuk PK, Afonin S, Ulrich AS, Komarov IV. Synthesis 2008; 1757
- 9d Duncton MA. J, Ayala L, Kaub C, Janagani S, Edwards WT, Orike N, Ramamoorthy K, Kincaid J, Kelly MG. Tetrahedron Lett. 2010; 51: 1009
- 9e Suárez del Villar I, Gradillas A, Pérez-Castells J. Eur. J. Org. Chem. 2010; 2010: 5850
- 9f Morandi B, Cheang J, Carreira EM. Org. Lett. 2011; 13: 3080
- 9g Morandi B, Mariampillai B, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 1101
- 9h Duncton MA. J, Singh R. Org. Lett. 2013; 15: 4284
- 9i Artamonov OS, Slobodyanyuk EY, Volochnyuk DM, Komarov IV, Tolmachev AA, Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2014: 3592
- 9j Zhu C.-L, Yang L.-J, Li S, Zheng Y, Ma J.-A. Org. Lett. 2015; 17: 3442
- 9k Zhu C.-L, Ma J.-A, Cahard D. Asian J. Org. Chem. 2016; 5: 66
- 10a Atherton JH, Fields R. J. Chem. Soc. C 1968; 1507
- 10b Fields R, Tomlinson JP. J. Fluorine Chem. 1979; 13: 147
- 10c Jin F, Xu Y, Ma Y. Tetrahedron Lett. 1992; 33: 6161
- 10d Artamonov OS, Mykhailiuk PK, Voievoda NM, Volochnyuk DM, Komarov IV. Synthesis 2010; 443
- 10e Artamonov OS, Slobodyanyuk EY, Shishkin OV, Komarov IV, Mykhailiuk PK. Synthesis 2013; 45: 225
- 10f Li T.-R, Duan S.-W, Ding W, Liu Y.-Y, Chen J.-R, Lu L.-Q, Xiao W.-J. J. Org. Chem. 2014; 79: 2296
- 10g Slobodyanyuk EY, Artamonov OS, Shishkin OV, Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2487
- 10h Zhang F.-G, Wei Y, Yi Y.-P, Nie J, Ma J.-A. Org. Lett. 2014; 16: 3122
- 11 Wang S, Nie J, Zheng Y, Ma J.-A. Org. Lett. 2014; 16: 1606
- 12 Wang X, Meng F, Wang Y, Han Z, Chen Y.-J, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
- 13 The X-ray crystallographic structure for 3a has been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number CCDC 1486595. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 14a Sandanayaka VP, Prashad AS, Yang Y, Williamson RT, Lin YI, Mansour TS. J. Med. Chem. 2003; 46: 2569
- 14b Marradi M, Brandi A, Magull J, Schill H, de Meijere A. Eur. J. Org. Chem. 2006; 5485
- 14c Cordero FM, Salvati M, Vurchio C, de Meijere A, Brandi A. J. Org. Chem. 2009; 74: 4225
- 14d Hu Y, Fu X, Barry B.-D, Bi X, Dong D. Chem. Commun. 2012; 48: 690
- 14e Santos BS, Nunes SC. C, Pais AA. C. C, Pinho e Melo TM. V. D. Tetrahedron 2012; 68: 3729
- 14f Santos BS, Gomes CS. B, Pinho e Melo TM. V. D. Tetrahedron 2014; 70: 3812
- 15 The X-ray crystallographic structures for 4a and epi-4a have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1486487 and 1486488. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 16 General Procedure for the [3+2] CycloadditionTo a Schlenk tube charged with 2 (81.3 mg, 0.60 mmol, 2.0 equiv) and NaNO2 (49.7 mg, 0.72 mmol, 2.4 equiv) was added MeCN (1.5 mL) and H2O (0.1 mL). The resulting mixture was stirred at 0 °C for 1 h before β-lactam 1 (0.30 mmol, 1.0 equiv) was added in one portion. Then the tube was sealed and heated at 60 °C until no β-lactam was observed by TLC. After cooling to r.t., the solvent was removed under reduced pressure, the residue was subjected to flash column chromatography on silica gel to give the desired product 3.
- 17a Representative Analytical Data2,3-Diphenyl-7-(trifluoromethyl)-2,5,6-triazaspiro[3.4]oct-6-en-1-one (3a)Yield 95%, 98 mg; light yellow solid, mp 182–184 °C. 1H NMR (400 MHz, CDCl3): δ = 7.52–6.96 (m, 10 H), 6.66 (s, 1 H), 5.09 (s, 1 H), 3.10 (dd, J = 20.0, 1.2 Hz, 1 H), 2.43 (d, J = 20.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 165.1, 140.2 (q, J = 38.0 Hz), 136.2, 135.7, 135.4, 130.9, 129.7, 129.4, 125.2, 119.8 (q, J = 268.0 Hz), 117.8, 82.4, 68.8, 33.5. 19F NMR (376 MHz, CDCl3): δ –67.1. ESI-HRMS: m/z calcd for C18H14F3N3NaO+: 368.0981; found: 368.0986 [M + Na]+.
- 18 General Procedure for the [2+1] CycloadditionTo a Schlenk tube charged with FeTPPCl (14.1 mg, 0.02 mmol, 0.1 equiv) and β-lactam 1 (0.20 mmol, 1.0 equiv) was added DMF (2.0 mL). The resulting mixture was allowed to cool to 0 °C, and then a DMF solution of CF3CHN2 (0.8 M, 1 mL, 0.8 mmol, 4.0 equiv) was added via syringe pump at speed of 0.2 mL/h. After completion of the addition, stirring was continued for a further 6 h. The reaction was quenched with H2O (3 mL), extracted with EtOAc (3 × 10 mL). The organic layer was combined, dried over anhydrous Na2SO4, concentrated under reduced pressure to give the crude product 4. The unpurified product was directly examined by 19F NMR analysis to determine the diastereomeric ratio, and then subjected to flash column chromatography on silica gel to give the major isomer.
- 19 Representative Analytical Data5,6-Diphenyl-1-(trifluoromethyl)-5-azaspiro[2.3]hexan-4-one (4a)Yield 89%, 46 mg, 81:19 dr. Analytical data for the major isomer: white solid, mp 132–134 °C. 1H NMR (400 MHz, CDCl3): δ = 7.41–7.22 (m, 9 H), 7.06–7.02 (m, 1 H), 5.09 (s, 1 H), 2.30–2.21 (m, 1 H), 1.69 (t, J = 6.0 Hz, 1 H), 0.86–0.81 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 163.9, 137.6, 134.9, 129.4, 129.2, 129.1, 126.8, 124.5 (q, J =272.0 Hz), 124.0, 116.9, 61.5, 42.8, 24.2 (q, J = 39.0 Hz), 10.2 (q, J = 3.0 Hz). 19F NMR (376 MHz, CDCl3): δ = –63.0 (d, J = 7.5 Hz). ESI-HRMS: m/z calcd for C18H14F3NNaO+ 340.0920; found: 340.0948 [M + Na]+.
For complete summaries of transformations involve CF3CHN2, see:
For cyclopropanation, see:
For [3+2] cycloaddition, see: