Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(04): 499-503
DOI: 10.1055/s-0036-1588635
DOI: 10.1055/s-0036-1588635
letter
Bulky Phosphane Ligand for Monoselective Ruthenium-Catalyzed, Directed o-C–H Arylation with Challenging Aryl Chlorides
Further Information
Publication History
Received: 23 August 2016
Accepted after revision: 05 October 2016
Publication Date:
09 November 2016 (online)

Abstract
Functionalized aryl chlorides are more economically attractive but usually much more difficult as substrates in metal-mediated couplings than the corresponding bromides and iodides. A catalyst prepared from a bulky (biaryl)diphenyl phosphane and a common ruthenium source (1:1) mediates selective direct monoarylations of arenes bearing 2-pyridyl and related ortho-directing groups in good yields. Sequential arylations to heterodiarylated products also proceed in satisfactory yields.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588635.
- Supporting Information
-
References and Notes
- 1 de Meijere A, Bräse S, Oestreich M. Metal Catalyzed Cross-Coupling Reactions and More . Wiley-VCH; Weinheim: 2014
- 2 Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2010; 51: 5062
- 3a Bedford RB, Cazin CS. J, Holder D. Coord. Chem. Rev. 2004; 248: 2283
- 3b Littke AF. Angew. Chem. Int. Ed. 2002; 41: 4176
- 4a Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
- 4b Wurtz S, Glorius F. Acc. Chem. Res. 2008; 41: 1523
- 4c Marion N, Nolan EM. Acc. Chem. Res. 2008; 41: 1440
- 4d Kantchev EA. B, O’Brien CJ, Organ MG. Angew. Chem. Int. Ed. 2007; 46: 2768
- 4e Kantchev EA. B, O’Brien CJ, Organ MG. Aldrichimica Acta 2006; 39: 97
- 4f Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
- 5 Li H, Seechurn CC. C. J, Colacot TJ. ACS Catal. 2012; 2: 1147
- 6a Wong SM, Yuen OY, Choy PY, Kwong FY. Coord. Chem. Rev. 2015; 293: 158
- 6b Fleckenstein CA, Plenio H. Chem. Soc. Rev. 2010; 39: 694
- 6c Valentine DH, Hillhouse JH. Synthesis 2003; 2437
- 7 Christmann U, Vilar R. Angew. Chem. Int. Ed. 2005; 44: 366
- 8a Chen LY, Ren P, Carrow BP. J. Am. Chem. Soc. 2016; 138: 6392
- 8b Gildner PG, Colacot TJ. Organometallics 2015; 34: 5497
- 8c So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
- 8d Peh G.-R, Kantchev EA. B, Er J.-C, Ying JY. Chem. Eur. J. 2010; 16: 4010
- 9a Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
- 9b Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
- 9c Mauger CC, Mignani GA. Aldrichimica Acta 2006; 39: 17
- 10a Zha G.-F, Qin H.-L, Kantchev EA. B. RSC Adv. 2016; 6: 30875
- 10b Manikandan R, Jeganmohan M. Org. Biomol. Chem. 2015; 13: 10420
- 10c Biafora A, Patureau FW. Synlett 2014; 25: 2525
- 10d De Sarkar S, Liu W, Kozhushkov SI, Ackermann L. Adv. Synth. Catal. 2014; 356: 1395
- 10e Thirunavukkarasu VS, Kozhushkov SI, Ackermann L. Chem. Commun. 2014; 50: 29
- 10f Julia-Hernandez F, Simonetti M, Larrosa I. Angew. Chem. Int. Ed. 2013; 52: 11458
- 10g Li B, Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
- 10h Ackermann L. Acc. Chem. Res. 2014; 47: 281
- 10i Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 10j Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ. Pure Appl. Chem. 2006; 78: 209-214
- 11 Oi S, Fukita S, Hirata N, Watanuki N, Miyano S, Inoue Y. Org. Lett. 2001; 3: 2579
- 12a Ackermann L, Althammer A, Born R. Angew. Chem. Int. Ed. 2006; 45: 2619
- 12b Ackermann L. Org. Lett. 2005; 7: 3123
- 13 Ackermann L, Born R, Álvarez-Bercedo P. Angew. Chem. Int. Ed. 2007; 46: 6364
- 14 Kobayashi Y, Kashiwa M, Sonoda M, Kirihata M, Tanimori S. Synthesis 2014; 46: 3185
- 15 Arockiam PB, Fischmeister C, Bruneau C, Dixneuf PH. Green Chem. 2013; 15: 67
- 16 Ackermann L, Diers E, Manvar A. Org. Lett. 2012; 14: 1154
- 17 Arockiam PB, Fischmeister C, Bruneau C, Dixneuf PH. Angew. Chem. Int. Ed. 2010; 49: 6629
- 18 Ackermann L, Novák P, Vicente R, Pirovano V, Potukuchi HK. Synthesis 2010; 2245
- 19 Zhang J, Yang Q, Zhu Z, Yuan ML, Fu HY, Zheng XL, Chen H, Li RX. Eur. J. Org. Chem. 2012; 6702
- 20a Yu B, Yan X, Wang S, Tang N, Xi C. Organometallics 2010; 29: 3222
- 20b Doherty S, Knight JG, Addyman CR, Smyth CH, Ward NA. B, Harrington RW. Organometallics 2011; 30: 6010
- 21a Arockiam P, Poirier V, Fischmeister C, Bruneau C, Dixneuf PH. Green Chem. 2009; 11: 1871
- 21b Ackermann L, Vicente R, Potukuchi HK, Pirovano V. Org. Lett. 2010; 12: 5032
- 21c Štefane B, Fabris J, Požgan F. Eur. J. Org. Chem. 2011; 3474
- 21d Li W, Arockiam PB, Fischmeister C, Bruneau C, Dixneuf PH. Green Chem. 2011; 13: 2315
- 22a Chung KH, So CM, Wong SM, Luk CH, Zhou Z, Lau CP, Kwong FY. Chem. Commun. 2012; 48: 1967
- 22b Chun To S, Yee Kwong F. Chem. Commun. 2011; 47: 5079
- 22c Fu WC, Zhou Z, Kwong FY. Org. Chem. Front. 2016; 3: 273
- 22d Lee HW, Lam FL, So CM, Lau CP, Chan AS. C, Kwong FY. Angew. Chem. Int. Ed. 2009; 48: 7436
- 22e So CM, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2008; 47: 8059
- 23 Luo N, Yu Z. Chem. Eur. J. 2010; 16: 787
- 24 Experimental Procedure Two runs were set side by side. A Schlenk tube was loaded with [RuCl2(p-cymene)]2 (3.1 mg, 5 μmol, 1 mol%), L3 (3.9 mg, 10 μmol, 2 mol%), and K2CO3 (173 mg, 1.25 mmol). The tube was backfilled with Ar (3×). Under light backflow of Ar, NMP (0.5 mL) was added, followed by 1a (86 μL, 93 mg, 0.6 mmol) and p-chloroanisole (2a; 62 μL, 71 mg, 0.5 mmol). The tube was sealed and the reaction mixture was stirred at 120 °C for 24 h. After cooling to r.t., under light backflow of Ar, o-chlorotoluene (2k; 59 μL, 63.3 mg, 0.5 mmol) was added, the tube was sealed, and the reaction mixture was stirred 140 °C for 24 h. After cooling to r.t., the reaction mixtures from both tubes were combined in H2O (40 mL) and EtOAc (20 mL). The organic phase was separated and washed with H2O (3 × 30 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. Compounds 3aa (65.3 mg, 25%; PE–EtOAc, 20:1), 4aa (64.6 mg, 18%; PE–EtOAc, 4:1), and 5 (214.4 mg, 61%; PE–EtOAc, 4:1) were sequentially isolated after flash chromatography. Compound 5: white solid, mp 107–108 °C. 1H NMR (600 MHz, CDCl3): δ = 8.26 (d, J = 4.6 Hz, 1 H), 7.46 (dt, J = 7.6, 4.1 Hz, 2 H), 7.27 (s, 1 H), 7.08–6.96 (m, 7 H), 6.85 (dd, J = 11.4, 6.4 Hz, 2 H), 6.69 (d, J = 8.5 Hz, 2 H), 3.74 (s, 3 H), 2.05 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 158.8, 158.0, 148.2, 141.5, 141.2, 141.0, 134.7, 134.0, 130.7–130.4 (multiple carbons), 129.3–128.8 (multiple carbons), 127.8, 126.7, 126.1, 124.7, 120.7, 113.1, 113.1, 55.1, 20.3. ESI-HRMS: m/z [M + H]+ calcd for C25H22NO+: 352.1696; found: 352.1698.
L1:
L2:
L3:
L4: