Synlett 2017; 28(05): 577-582
DOI: 10.1055/s-0036-1588916
letter
© Georg Thieme Verlag Stuttgart · New York

Preparation of Symmetrical and Nonsymmetrical Fluorene ­Sulfonamide Scaffolds

D. Heulyn Jones
a   WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: Nicholas.Tomkinson@strath.ac.uk
,
James P. Tellam
a   WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: Nicholas.Tomkinson@strath.ac.uk
,
Stefano Bresciani
a   WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: Nicholas.Tomkinson@strath.ac.uk
,
Justyna Wojno-Picon
a   WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: Nicholas.Tomkinson@strath.ac.uk
b   GlaxoSmithKline Medicines Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
,
Anthony W. J. Cooper
b   GlaxoSmithKline Medicines Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
,
Nicholas C. O. Tomkinson*
a   WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: Nicholas.Tomkinson@strath.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 11 August 2016

Accepted after revision: 27 October 2016

Publication Date:
17 November 2016 (online)


Abstract

Methods for the preparation of symmetrical and nonsymmetrical 2,7-disubstituted 9H-fluorene derivatives are described.

Supporting Information

 
  • References and Notes

  • 1 Burns DM, Iball J. Nature (London, UK) 1954; 173: 635
  • 2 Montalvo-Gonzalez R, Chavez D, Aguirre G, Parra-Hake M, Somanathan R. J. Braz. Chem. Soc. 2010; 21: 431
  • 3 Anthony KG, Strych U, Yeung KR, Shoen CS, Perez O, Krause KL, Cynamon MH, Aristoff PA, Koski RA. PLoS One 2011; 6: e20374
  • 4 Desai PV, Patny A, Gut J, Rosenthal PJ, Tekwani B, Srivastava A, Avery M. J. Med. Chem. 2006; 49: 1576
  • 5 Schuster D, Nashev LG, Kirchmair J, Laggner C, Wolber G, Langer T, Odermatt A. J. Med. Chem. 2008; 51: 4188
  • 6 Benz A, Singh V, Mayer TU, Hartig JS. ChemBioChem 2011; 12: 1422
  • 8 Canabate Diaz B, Schulman SG, Segura Carretero A, Fernandez Gutierrez A. Anal. Chim. Acta 2003; 489: 165
  • 9 Mysyk DD, Perepichka IF, Sokolov NI. J. Chem. Soc., Perkin Trans 2 1997; 537
  • 11 Saroja G, Pingshu Z, Ernsting NP, Liebscher J. J. Org. Chem. 2004; 69: 987
  • 12 Carpino LA. J. Org. Chem. 1980; 45: 4250

    • See, for example:
    • 13a Jones DH, Bresciani S, Tellam JP, Wojno J, Cooper AW. J, Kennedy AR, Tomkinson NC. O. Org. Biomol. Chem. 2016; 14: 172
    • 13b Trump RP, Bresciani S, Cooper AW. J, Tellam JP, Wojno J, Blaikley J, Orband-Miller LA, Kashatus J, Dawson HC, Loudon A, Ray D, Grant D, Farrow SN, Willson TM, Tomkinson NC. O. J. Med. Chem. 2013; 56: 4729
  • 14 The monosulfonation of fluorene has been reported, see: Courtot C, Geoffroy R. C. R. Hebd. Seances Acad. Sci. 1924; 178: 2259
  • 15 Shavnya A, Coffey SB, Smith AC, Mascitti V. Org. Lett. 2013; 15: 6226
  • 16 Fors BP, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 15914
  • 19 General Procedure for the Microwave-Assisted Formation of Sulfonamides 9H-Fluorene-2,7-disulfonyl dichloride (4, 100 mg, 0.28 mmol), acetone (1.52 mL), THF (0.28 mL), amine (0.56 mmol), and 2 M NaOH (aq, 0.32 mL) were added to a 5 mL microwave vial equipped with a magnetic stirrer bar. The mixture was heated in a Biotage Initiator at 100 °C for 15 min and allowed to cool to r.t. CH2Cl2 (10 mL) was added, and the mixture washed with water (10 mL), sat. Na2CO3 solution (10 mL), 2 M HCl (aq) solution (10 mL),and brine (10 mL). The organic extract was dried over MgSO4, filtered, and concentrated under reduced pressure to give the crude product. N,N-Diisopropyl-9H-fluorene-2,7-disulfonamide (13) Prepared by the General Procedure, using isopropylamine (0.05 mL, 0.58 mmol). Purified by column chromatography on silica (PE–EtOAc = 2:1, followed by 1:1) to give 13 as a yellow-orange solid (80 mg, 71%); mp 194–195 °C. IR (ATR): 3054, 2990, 1456, 1403, 1304, 1235, 1181, 1103 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 8.21 ( 2H, d, J = 8.1 Hz), 8.06 (2 H, d, J = 0.8 Hz), 7.89 (2 H, dd, J = 8.1, 1.5 Hz), 7.61 (2 H, d, J = 7.2 Hz), 4.18 (2 H, s), 3.22–3.35 (2 H, m), 0.96 (12 H, d, J = 6.5 Hz). 13C NMR (101 MHz, DMSO-d 6): δ = 144.7 (Cq), 143.0 (Cq), 141.1 (Cq), 125.5 (CH), 123.4 (CH), 121.5 (CH), 45.2 (CH), 36.7 (CH2), 23.2 (CH3). LC–MS: m/z = 407.1 [M – 1]+. HRMS: m/z calcd for C19H23O4N2S2: 407.1105; found: 407.1107. Palladium-Catalysed Procedures 7-(Morpholinosulfonyl)-N-(p-tolyl)-9H-fluorene-2-sulfonamide (21) A microwave vial was charged with 20 (30.0 mg, 0.062 mmol), K2S2O5 (33.0 mg, 0.148 mmol), TBAB (26.3 mg, 0.082 mmol), NaO2CH (12.0 mg, 0.176 mmol), Pd(OAc)2 (1.0 mg, 5 mol%), Ph3P (3.0 mg, 0.013 mmol), 1,10-phenanthroline (2.0 mg, 0.011 mmol), and DMSO (0.2 mL). The mixture was degassed by bubbling nitrogen through the solvent for 10 min, and then heated under argon at 70 °C for 3 h. Following cooling to r.t., a solution of morpholine (12.6 mg, 0.145 mmol) in anhydrous THF (1.0 mL) was added, and the mixture cooled to 0 °C. A solution of NBS (25.8 mg, 0.145 mmol) in THF (1.0 mL) was added dropwise and the mixture left to warm to r.t. over 1 h. Water (10 mL) was added, and the mixture extracted with EtOAc (3 × 10 mL). The organics were combined and washed with water (20 mL), brine (20 mL), dried over MgSO4, filtered, and concentrated under reduced pressure to give the crude product, which was purified by column chromatography (PE–EtOAc = 1:1) to give 21 as a yellow solid (27 mg, 77%). 1H NMR (400 MHz, acetone-d 6): δ = 8.87 (1 H, s), 8.19 (1 H, d, J = 8.0 Hz), 8.11 (1 H, d, J = 8.4 Hz), 8.01–8.06 (2 H, m), 7.81–7.88 (2 H, m), 7.11 (2 H, d, J = 8.4 Hz), 7.04 (2 H, d, J = 8.4 Hz), 4.14 (2 H, s), 3.62–3.72 (4 H, m), 2.93–3.03 (4 H, m), 2.21 (3 H, s). 13C NMR (101 MHz, acetone-d 6): δ = 146.2 (Cq), 145.9 (Cq), 145.2 (Cq), 144.8 (Cq), 140.5 (Cq), 136.1 (Cq), 135.7 (Cq), 135.3 (Cq), 130.5 (CH), 128.0 (CH), 127.3 (CH), 125.8 (CH), 125.1 (CH), 122.5 (CH), 122.3 (CH), 122.2 (CH), 66.7 (CH2), 47.1 (CH2), 37.7 (CH2), 20.7 (CH3). LC–MS m/z = 483.2 [M – 1]+. HRMS: m/z calcd for C25H25N2O5S2: 485.1199; found: 485.1189. 7-Morpholino-N-(p-tolyl)-9H-fluorene-2-sulfonamide (22) A mixture of RuPhos palladacycle (7 mg, 0.05 equiv), RuPhos (5 mg, 0.05 equiv), NaOt-Bu (29 mg, 0.30 mmol), 7-bromo-N-(p-tolyl)-9H-fluorene-2-sulfonamide (83 mg, 0.20 mmol), and morpholine (0.021 mL, 0.24 mmol) in 1,4-dioxane (0.50 mL) was sealed and heated in a Biotage Initiator at 120 °C for 30 min. After cooling, the sample was passed through a plug of Celite using MeOH (10.0 mL), then concentrated under reduced pressure to give the crude product, which was purified by column chromatography (PE–EtOAc = 1:1) to give 21 (59 mg, 72%) as a yellow solid; mp 170 °C (decomp.); IR (ATR): 2922, 1612, 1512, 1451, 1419, 1243, 1189, 1111 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.82 (1 H, d, J = 1.2 Hz), 7.70 (1 H, dd, J = 8.0, 0.8 Hz), 7.67 (1 H, d, J = 8.8 Hz), 7.64 (1 H, d, J = 8.4 Hz), 7.10 (1 H, d, J = 2.0 Hz), 6.99–7.04 (2 H, m), 6.92–6.98 (3 H, m), 6.41 (1 H, s), 3.86–3.92 (4 H, m), 3.83 (2 H, s), 3.20–3.28 (4 H, m), 2.26 (3 H, s). 13C NMR (101 MHz, CDCl3): δ = 152.1 (Cq), 146.8 (Cq), 146.2 (Cq), 143.1 (Cq), 135.6 (Cq), 135.4 (Cq), 134.0 (Cq), 133.3 (Cq), 130.0 (CH), 126.7 (CH), 123.8 (CH), 122.7 (CH), 121.8 (CH), 118.9 (CH), 115.2 (CH), 112.1 (CH), 67.0 (CH2), 49.5 (CH2), 37.1 (CH2), 21.0 (CH3). LC–MS: m/z = 421.1 [M + 1]+. HRMS: m/z calcd for C24H25N2O3S: 422.1580; found: 422.1577. 7-(Morpholine-4-carbonyl)-N-(p-tolyl)-9H-fluorene-2-sulfonamide (23) A mixture of Pd(OAc)2 (2.0 mg, 0.05 equiv), Xantphos (6.0 mg, 0.05 equiv), Mo(CO)6 (53.0 mg, 0.05 equiv), DMAP (37.0 mg, 0.30 mmol), 7-bromo-N-(p-tolyl)-9H-fluorene-2-sulfonamide (83.0 mg, 0.20 mmol), and morpholine (0.034 mL, 0.39 mmol) in 1,4-dioxane (0.50 mL) was sealed and heated in a Biotage Initiator at 90 °C for 30 min. After cooling, the reaction mixture was passed through Celite using MeOH (10.0 mL), then concentrated under reduced pressure to give the crude product, which was purified by column chromatography (PE–EtOAc = 4:1) to give 22 as a yellow solid (0.068 g, 76%); mp 210 °C (decomp.). IR (ATR): 2925, 2853, 1619, 1605, 1445, 1332, 1243, 1191, 1148, 1111, 1049 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.92 (1 H, d, J = 0.7 Hz), 7.82 (1 H, d, J = 8.0 Hz), 7.75–7.80 (2 H, m), 7.62 (1 H, d, J = 0.8 Hz), 7.45 (1 H, dd, J = 8.0, 1.2 Hz, 1 H), 7.02 (2 H, d, J = 8.0 Hz), 6.96 (2 H, d, J = 8.0 Hz), 6.77 (1 H, br s), 3.91 (2 H, s), 3.50–3.87 (8 H, m), 2.25 (3 H, s). 13C NMR (101 MHz, CDCl3): δ = 170.5 (Cq), 145.3 (Cq), 144.6 (Cq), 144.1 (Cq), 141.6 (Cq), 137.9 (Cq), 135.7 (Cq), 135.2 (Cq), 133.8 (Cq), 130.0 (CH), 126.7 (CH), 126.4 (CH), 124.4 (CH), 124.2 (CH), 122.7 (CH), 121.0 (CH), 120.6 (CH), 67.0 (CH2), 37.1 (CH2), 21.0 (CH3), one carbon missing. LC–MS: m/z = 449.1 [M + 1]+. HRMS: m/z calcd for C25H25N2O4S: 449.1530; found: 449.1530.