Synlett 2017; 28(20): 2876-2880
DOI: 10.1055/s-0036-1589070
letter
© Georg Thieme Verlag Stuttgart · New York

Thiourea-Catalyzed Domino Michael–Mannich [3+2] Cycloadditions: A Strategy for the Asymmetric Synthesis of 3,3′-Pyrrolidinyl-dispirooxindoles

Ying Zhi
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Kun Zhao
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Carolina von Essen
b   Department of Chemistry, Nanoscience Center, University of Jyvaskyla, 40014 JYU, Finland
,
Kari Rissanen
b   Department of Chemistry, Nanoscience Center, University of Jyvaskyla, 40014 JYU, Finland
,
Dieter Enders*
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
› Author Affiliations
Financial support from the European Research Council (ERC Advanced Grant 320493 ‘DOMINOCAT’) is gratefully acknowledged.
Further Information

Publication History

Received: 22 May 2017

Accepted after revision: 08 June 2017

Publication Date:
13 July 2017 (online)


Dedicated to Professor Victor Snieckus on the occasion of his 80th birthday

Abstract

The asymmetric synthesis of trifluoromethylated 3,3′-pyrrolidinyl-dispirooxindole derivatives with four contiguous stereogenic centers, including two vicinal spiro-stereocenters, is described. Employing a bifunctional thiourea catalyst, a domino Michael–Mannich [3+2] cycloaddition occurs readily between isatin ketimines and isatin-derived enoates with good yields and very high stereoselectivities, providing a direct entry to the title compounds of potential medical value.

Supporting Information

 
  • References and Notes

  • 1 For a leading review, see: Galliford CV. Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748

    • For selected reviews, see:
    • 2a Marti C. Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 2b Trost BM. Brennan MK. Synthesis 2009; 3003

    • For an excellent example, see:
    • 2c Antonchick AP. Gerding-Reimers C. Catarinella M. Schürmann M. Preut H. Ziegler S. Rauh D. Waldmann H. Nat. Chem. 2010; 2: 735
    • 2d Tan B. Zeng X. Leong WW. Y. Shi Z. Barbas III CF. Zhong G. Chem. Eur. J. 2012; 18: 63
  • 4 Dai W. Jiang X.-L. Wu Q. Shi F. Tu S.-J. J. Org. Chem. 2015; 80: 5737
  • 5 Zhao K. Zhi Y. Li X. Puttreddy R. Rissanen K. Enders D. Chem. Commun. 2016; 52: 2249
  • 11 While this manuscript was in preparation, an elegant paper by Lu, Weng, Lin and co-workers appeared and described a similar reaction catalyzed by chiral squaramides rather than thioureas: Huang W.-J. Chen Q. Lin N. Long X.-W. Pan W.-G. Xiong Y.-S. Weng J. Lu G. Org. Chem. Front. 2017; 4: 472
  • 12 General Procedure for the Synthesis of 3,3′-Pyrrolidinyl-dispirooxindoles 3a–q A glass tube equipped with a stirring bar was charged with trifluoroethylisatin ketimine 1 (0.40 mmol, 1.0 equiv), 3-olefinic oxindole 2 (0.48 mmol, 1.2 equiv), catalyst J (0.04 mmol, 10 mol%), and CCl4 (4.0 mL). The resulting solution of the reaction mixture was cooled to 4 °C and was stirred at 4 °C for 12 h. The solvent was evaporated to give the crude product, which was directly purified by flash chromatography (pentane/Et2O) to provide the desired products 3aq. Analytical Data for Compound 3a Compound 3a was obtained as a light yellow solid (0.223 g, 87% yield), mp 162–164 °C; [α]D 25 +58.9 (c 1.0, CHCl3). HPLC: CHIRALPAK IC; n-heptane/i-PrOH = 9:1; flow rate 1.0 mL/min; temp 30 °C; t R = 6.80 min (major), 10.58 min (minor); ee 92%. 1H NMR (600 MHz, CDCl3): δ = 7.76 (d, J = 8.4 Hz, 1 H), 7.54 (d, J = 7.8 Hz, 1 H), 7.38–7.34 (m, 3 H), 7.33–7.30 (m, 2 H), 7.28–7.24 (m, 2 H), 7.01 (t, J = 7.8 Hz, 1 H), 6.59–6.56 (m, 1 H), 6.53 (d, J = 7.8 Hz, 1 H), 6.47 (d, J = 8.4 Hz, 1 H), 5.24 (d, J = 15.6 Hz, 1 H), 5.07 (d, J = 9.0 Hz, 1 H), 4.97–4.92 (m, 1 H), 4.46 (d, J = 15.6 Hz, 1 H), 3.84–3.74 (m, 2 H), 2.81 (br s, 1 H), 1.56 (s, 9 H), 0.81 (t, J = 7.2 Hz, 3 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 175.4, 170.0, 167.6, 148.7, 143.7, 140.0, 135.5, 130.4, 130.1, 128.7 (2 C), 127.6 (2 C), 127.5, 125.3 (q, J = 279.9 Hz), 125.2 (2 C), 124.0, 123.9, 123.4, 121.9, 115.3, 109.3, 84.5, 72.5, 63.1, 61.4, 60.2 (q, J = 32.2 Hz), 51.2, 44.5, 28.1 (3 C), 13.4 ppm. IR (ATR): 3823, 3456, 2969, 2655, 2330, 2089, 1889, 1741, 1366, 1216, 811, 687 cm–1. ESI-MS: m/z = 658.2 [M + Na]+. ESI-HRMS: m/z [M + Na]+ calcd for C34H32N3O6F3Na+: 658.2135; found: 658.2136.
  • 13 CCDC 1549337 contains the supplementary crystallographic data for the compound 4. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/getstructures.