Subscribe to RSS
DOI: 10.1055/s-0036-1590793
Ambident Reactivity of Nitroso Compounds for Direct Amination and Hydroxylation of Carbonyls
We gratefully acknowledge DST (EMR/2014/000225) and IIT Madras for financial support.Publication History
Received: 30 April 2017
Accepted after revision: 29 May 2017
Publication Date:
17 July 2017 (online)
To Professor Herbert Mayr on the occasion of his 70th birthday
Abstract
Functionalization of carbonyls, particularly with a heteroatom subunit, is an important synthetic transformation. Utilization of ambident electrophiles for such a strategy is advantageous because two different heteroatom units can be installed from a single source under judicial reaction conditions. Recently, there have been increased examples for the construction of C–O and C–N bonds using nitroso compounds, a prototype of ambident electrophiles. In this short review, we discuss the advantages and challenges of exploiting nitroso compounds in organic synthesis with specific focus on nitroso aldol type processes for the direct hydroxylation and amination of carbonyl compounds.
1 Introduction
2 Prime Challenges in Nitroso Aldol Reactions
3 Direct Hydroxylation Reactions
4 Direct Amination Reactions
5 Conclusion and Outlook
-
References
- 1a Nicolaou KC. Vassilikogiannakis G. Simonsen KB. Baran PS. Zhong YL. Vidali VP. Pitsinos EN. Couladouros EA. J. Am. Chem. Soc. 2000; 122: 3071
- 1b Christoffers J. Baro A. Werner T. Adv. Synth. Catal. 2004; 346: 143
- 1c Myers MC. Wang J. Iera JA. Bang JK. Saito S. Hara T. Zambetti GP. Appella DH. J. Am. Chem. Soc. 2005; 127: 6152
- 1d Nchinda AT. Chibale K. Redelinghuys P. Sturrock ED. Bioorg. Med. Chem. Lett. 2006; 16: 4612
- 1e Meltzer PC. Butler D. Deschamps JR. Madras BK. J. Med. Chem. 2006; 49: 1420
- 1f Hoyos P. Sinisterra JV. Molinari F. Alcantara AR. De Maria PD. Acc. Chem. Res. 2010; 43: 288
- 1g Evans RW. Zbieg JR. Zhu S. Li W. Macmillan DW. C. J. Am. Chem. Soc. 2013; 135: 16074
- 1h Váradi A. Palmer TC. Haselton N. Afonin D. Subrath JJ. Le Rouzic V. Hunkele A. Pasternak GW. Marrone GF. Borics A. Majumdar S. ACS Chem. Neurosci. 2015; 6: 1570
- 2a Rodriguez E. McDaniel R. Curr. Opin. Microbiol. 2001; 4: 526
- 2b Copley SD. Curr. Opin. Chem. Biol. 2003; 7: 265
- 2c Müller M. Curr. Opin. Biotechnol. 2004; 15: 591
- 3 Hili R. Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 4a Correa A. García Mancheño O. Bolm C. Chem. Soc. Rev. 2008; 37: 1108
- 4b Company A. Gómez L. Costas M. Bioinspired Non-heme Iron Catalysts in C–H and C=C Oxidation Reactions. In Iron-Containing Enzymes: Versatile Catalysts of Hydroxylation Reactions in Nature. De Visser SP. Kumar D. RSC; Cambridge: 2011: 148-208
- 5a Driver TG. Org. Biomol. Chem. 2010; 8: 3831
- 5b Chang JW. W. Ton TM. U. Chan PW. H. Chem. Rec. 2011; 11: 331
- 5c Zhang L. Deng L. Chin. Sci. Bull. 2012; 57: 2352
- 5d Hennessy ET. Liu RY. Iovan DA. Duncan RA. Betley TA. Chem. Sci. 2014; 5: 1526
- 5e Liu Y. Chen GQ. Tse CW. Guan X. Xu ZJ. Huang JS. Che CM. Chem. Asian J. 2015; 10: 100
- 6 Mayr H. Ofial AR. Angew. Chem. Int. Ed. 2006; 45: 1844
- 7 Lee J. Chen L. West AH. Richter-Addo GB. Chem. Rev. 2002; 102: 1019
- 8a Yamamoto H. Momiyama N. Chem. Commun. 2005; 3514
- 8b Yamamoto Y. Yamamoto H. Eur. J. Org. Chem. 2006; 2031
- 8c Janey JM. Angew. Chem. Int. Ed. 2005; 44: 4292
- 9 Selected review on hetero-Diels–Alder reactions of nitroso compounds: Bodnar BS. Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5630
- 10a Baidya M. Yamamoto H. Synthesis 2013; 45: 1931
- 10b Palmer LI. Frazier CP. Read de Alaniz J. Synthesis 2014; 46: 269
- 11 Selected review on nitroso aldol reactions: Maji B. Yamamoto H. Bull. Chem. Soc. Jpn. 2015; 88: 753
- 12 Memeo MG. Quadrelli P. Chem. Rev. 2017; 117: 2108
- 13 Yamamoto H. Kawasaki M. Bull. Chem. Soc. Jpn. 2007; 80: 595
- 14a Frazier CP. Engelking JR. Read de Alaniz J. J. Am. Chem. Soc. 2011; 133: 10430
- 14b Chaiyaveij D. Cleary L. Batsanov A. Marder TB. Shea KJ. Whiting A. Org. Lett. 2011; 13: 3442
- 14c Teo YC. Pan Y. Tan CH. ChemCatChem 2013; 5: 235
- 14d Baidya M. Griffin KA. Yamamoto H. J. Am. Chem. Soc. 2012; 134: 18566
- 14e Murru S. Lott CS. Fronczek FR. Srivastava RS. Org. Lett. 2015; 17: 2122
- 14f Atkinson D. Kabeshov MA. Edgar M. Malkov AV. Adv. Synth. Catal. 2011; 353: 3347
- 14g Kano T. Shirozu F. Maruoka K. J. Am. Chem. Soc. 2013; 135: 18036
- 15 Akakura M. Kawasaki M. Yamamoto H. Eur. J. Org. Chem. 2008; 4245
- 16 Ramachary DB. Barbas CF. III. Org. Lett. 2005; 7: 1577
- 17 Tian G.-Q. Yang J. Rosa-Perez K. Org. Lett. 2010; 12: 5072
- 18a Girgis AS. Eur. J. Med. Chem. 2009; 44: 91
- 18b Prasanna P. Balamurugan K. Perumal S. Yogeeswari P. Sriram D. Eur. J. Med. Chem. 2010; 45: 5653
- 18c Karthikeyan SV. Bala BD. Raja VP. A. Perumal S. Yogeeswari P. Sriram D. Bioorg. Med. Chem. Lett. 2010; 20: 350
- 18d Sun H. Wang X. Chen Y. Ouyang L. Liu J. Zhang Y. Tetrahedron Lett. 2014; 55: 5434
- 18e Chen J.-P. Chen W.-W. Li Y. Xu M.-H. Org. Biomol. Chem. 2015; 13: 3363
- 19 Fisher DJ. Burnett GL. Velasco R. Read de Alaniz J. J. Am. Chem. Soc. 2015; 137: 11614
- 20 Ramakrishna I. Grandhi GS. Sahoo H. Baidya M. Chem. Commun. 2015; 51: 13976
- 21 Ramakrishna I. Sahoo H. Baidya M. Chem. Commun. 2016; 52: 3215
- 22a Bunescu A. Piemontesi C. Wang Q. Zhu J. Chem. Commun. 2013; 49: 10284
- 22b Gupta GK. Saini V. Khare R. Kumar V. Med. Chem. Res. 2014; 4209
- 23 Ohmatsu K. Ando Y. Nakashima T. Ooi T. Chem 2016; 1: 802
- 24 Ramakrishna I. Bhajammanavar V. Mallik S. Baidya M. Org. Lett. 2017; 19: 516
- 25 Reddy MK. Mallik S. Ramakrishna I. Baidya M. Org. Lett. 2017; 19: 1694
Selected reviews on the synthetic development in nitroso chemistry:
Selected reviews on nitroso ene reactions:
For Cu-catalyzed aerobic oxidation:
For photoredox-catalyzed oxidation:
For MnO2-based oxidation:
For Fe-catalyzed oxidation:
For BPO- and TEMPO-based oxidation: