Synlett 2017; 28(14): 1743-1747
DOI: 10.1055/s-0036-1590837
cluster
© Georg Thieme Verlag Stuttgart · New York

One-Pot Coupling–Cyclization–Alkylation Synthesis of 1,2,5-Trisubstituted 7-Azaindoles in a Consecutive Three-component Fashion

Timo Lessing
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
,
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
› Author Affiliations
Further Information

Publication History

Received: 05 May 2017

Accepted after revision: 20 June 2017

Publication Date:
24 July 2017 (online)


Published as part of the ISHC Conference Special Section

Abstract

1,2,5-Trisubstituted 7-azaindoles are rapidly and efficiently prepared in a one-pot, copper-free alkynylation–cyclization–alkylation sequence starting from unprotected 2-aminopyridyl halides in a consecutive three-component fashion. By extension to a consecutive four-component coupling–cyclization–iodination–alkylation synthesis of 3-iodo-1-methyl-2-phenyl-1H-pyrrolo[2,3-b]pyridine, a concise synthesis of SIS3, a selective TGF-β1 and signaling inhibitor, was realized.

Supporting Information

 
  • References and Notes

  • 1 Martinez-Outschoorn UE. Peiris-Pages M. Pestell RG. Sotgia F. Lisanti MP. Nat. Rev. Clin. Oncol. 2017; 14: 11
  • 4 For a review on various kinase inhibitors based upon azaindoles, see for example: Mérour J.-Y. Buron F. Ple K. Bonnet P. Routier S. Molecules 2014; 19: 19935

    • For selected very recent examples, see for example:
    • 5a Zhou QQ. Phoa AF. Abbassi RH. Hoque M. Reekie TA. Font JS. Ryan RM. Stringer BW. Day BW. Johns TG. Munoz L. Kassiou M. J. Med. Chem. 2017; 60: 2052
    • 5b Feneyrolles C. Guiet L. Singer M. Van Hijfte N. Dayde-Cazals B. Fauvel B. Cheve G. Yasri A. Bioorg. Med. Chem. Lett. 2017; 27: 862
    • 5c Kim J. Moon Y. Hong S. Bioorg. Med. Chem. Lett. 2016; 26: 5669
    • 5d Stanton RA. Lu X. Detorio M. Montero C. Hammond ET. Ehteshami M. Domaoal RA. Nettles JH. Feraud M. Schinazi RF. Bioorg. Med. Chem. Lett. 2016; 26: 4101
    • 5e Wucherer-Plietker M. Merkul E. Müller TJ. J. Esdar C. Knochel T. Heinrich T. Buchstaller HP. Greiner H. Dorsch D. Finsinger D. Calderini M. Bruge D. Grädler U. Bioorg. Med. Chem. Lett. 2016; 26: 3073
    • 5f Dayde-Cazals B. Fauvel B. Singer M. Feneyrolles C. Bestgen B. Gassiot F. Spenlinhauer A. Warnault P. Van Hijfte N. Borjini N. Cheve G. Yasri A. J. Med. Chem. 2016; 59: 3886
    • 5g Liu N. Wang YF. Huang GC. Ji CH. Fan W. Li HT. Cheng Y. Tian HQ. Bioorg. Chem. 2016; 65: 146
    • 5h Baltus CB. Jorda R. Marot C. Berka K. Bazgier V. Krystof V. Prie G. Viaud-Massuard MC. Eur. J. Med. Chem. 2016; 108: 701
  • 8 Müller TJ. J. In Multicomponent Reactions 1. General Discussion and Reactions Involving a Carbonyl Compound as Electrophilic Component, Science of Synthesis. Müller TJ. J. Georg Thieme Verlag KG; Stuttgart: 2014: 5
  • 10 Lessing T. Sterzenbach F. Müller TJ. J. Synlett 2015; 26: 1217
  • 12 Li J.-N. Liu L. Fu Y. Guo Q.-X. Tetrahedron 2006; 62: 4453
  • 14 Typical Procedure for the Synthesis of 1,5-Dimethyl-2-phenyl-1H-pyrrolo[2,3-b]pyridine (4b): In a dry screw-cap Schlenk tube with a magnetic stir bar were placed 2-amino-3-bromo-5-methyl pyridine (1a; 93 mg, 0.50 mmol), Pd(PPh3)2Cl2 (9.0 mg, 13 μmol), and (1-Ad)2PBn·HBr (12 mg, 25 μmol) and the vessel was evacuated. After flushing the vessel with nitrogen, anhydrous DMSO (1.0 mL), the corresponding phenyl acetylene (2a; 61 mg, 0.60 mmol) and DBU (225 mg, 1.50 mmol) were added and the reaction mixture was stirred at 100 °C under nitrogen for 1 h until the bromide was completely consumed (reaction monitored by TLC). After cooling to rt KOt-Bu (253 mg, 2.25 mmol) and DMSO (0.50 mL) were added and the mixture was stirred at 100 °C under nitrogen for 0.25 h. After cooling to rt, methyliodide (3b; 142 mg, 1.00 mmol) was added to the reaction mixture, which was stirred at rt for 5 min. Then, deionized water or brine (20 mL) was added to the mixture. The aqueous layer was extracted several times with ethyl acetate or dichloromethane. The combined organic phases were dried (anhydrous sodium sulfate) and, after filtration, the solvents were removed in vacuo. The residue was adsorbed on silica and purified by chromatography on silica gel (SNAP cartridge 100 g, hexanes/ethyl acetate) with a Biotage SP-1 flash chromatography purification system to give analytically pure 4b as a yellow solid. Yield: 72 mg (65%); mp 65 °C. IR (ATR): 3119 (w), 3078 (w), 3055 (w), 3005 (w), 2980 (w), 2945 (w), 2916 (w), 1599 (w), 1566 (w), 1532 (w), 1485 (m), 1296 (m), 748 (s), 694 (m) cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.45 (s, 3 H), 3.86 (s, 3 H), 6.44 (s, 1 H), 7.42–7.52 (m, 5 H), 7.70–7.71 (m, 1 H), 8.19 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 18.7 (CH3), 30.1 (CH3), 99.0 (CH), 120.7 (Cquat), 125.1 (Cquat), 128.3 (CH), 128.4 (CH), 128.7 (CH), 129.2 (CH), 132.6 (Cquat), 142.1 (Cquat), 143.5 (CH), 148.1 (Cquat). MS (EI, 70 eV): m/z (%) = 223 (15), 222 (100) [M]+, 221 (84), 220 (5), 205 (6), 152 (5), 145 (17) [M-C6H5]+, 111 (7), 110 (11). Anal. calcd. for C15H14N2 (222.3): C 81.05, H 6.35, N 12.60; Found: C 80.92, H 6.07, N 12.40.
  • 15 Fang Y.-Q. Yuen J. Lautens M. J. Org. Chem. 2007; 72: 5152
  • 16 Jinnin M. Ihn H. Tamaki K. Mol. Pharmacol. 2006; 69: 597
  • 17 Dubs C. Hamashima Y. Sasamoto N. Seidel TM. Suzuki S. Hashizume D. Sodeoka M. J. Org. Chem. 2008; 73: 5859