Synlett 2017; 28(20): 2865-2870
DOI: 10.1055/s-0036-1590890
letter
© Georg Thieme Verlag Stuttgart · New York

Sequential O-Arylation/Lanthanide(III)-Catalyzed [3,3]-Sigmatropic Rearrangement of Bromo-Substituted Allylic Alcohols

Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada   Email: rbatey@chem.utoronto.ca
,
Jun-ichi Kawakami
Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada   Email: rbatey@chem.utoronto.ca
,
Robert A. Batey*
Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada   Email: rbatey@chem.utoronto.ca
› Author Affiliations
We are grateful for financial support by Takeda Pharmaceutical Company (TPC) Ltd. and by the Natural Sciences and Engineering Research Council (NSERC) of Canada for a Discovery Grant to R.A.B and Alexander Graham Bell Canada Graduate Scholarships M and D3 to T.R.R.
Further Information

Publication History

Received: 03 July 2017

Accepted after revision: 28 July 2017

Publication Date:
25 August 2017 (online)


Dedicated to the Cardinal Chemist, the inimitable Prof. Victor Snieckus, on the occasion of his 80th birthday

Abstract

Lanthanide(III)-catalyzed aryl-Claisen rearrangement of substrates bearing halo-substituted allyl groups, specifically 2-bromoallyl aryl ethers, afford ortho-2-bromoallylphenols. Aryl ether substrates were synthesized from brominated allylic alcohols via Mitsunobu reaction, Cu(II)-catalyzed arylation using potassium aryltrifluoroborate salts, or SNAr reaction. Aryl-Claisen rearrangements proceeded in moderate to excellent yields using Eu(III) catalysis. The alkenylbromide functionality remains intact, illustrating the compatibility of synthetically important alkenylhalides during C–O/C–C σ-bond migration processes. Subsequent derivatization of the ortho-2-bromoallylphenol products through O-alkylation or C-arylation/alkenylation via Suzuki–Miyaura cross-coupling demonstrate the potential to access densely-functionalized molecules.

Supporting Information

 
  • References and Notes

  • 1 Koh MJ. Nguyen TT. Zhang H. Schrock RR. Hoveyda AH. Nature (London, U.K.) 2016; 531: 459 ; and references cited therein
  • 2 Johansson Seechurn CC. C. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 6 For a review on the utility of dibromocyclopropane ring-opening reactions, see: Halton B. Harvey J. Synlett 2006; 1975
  • 7 Gowrisankar S. Sergeev AG. Anbarasan P. Spannenberg A. Neumann H. Beller M. J. Am. Chem. Soc. 2010; 132: 11592 ; and references cited therein
  • 9 Quach TD. Batey RA. Org. Lett. 2003; 5: 1381
  • 11 Terrier F. Modern Nucleophilic Aromatic Substitution. Wiley-VCH; Weinheim: 2013
  • 12 Reaction of phenols with allylic mesylates has also been used, see: Yagoubi M. Cruz AC. F. Nichols PL. Elliott RL. Willis MC. Angew. Chem. Int. Ed. 2010; 49: 7958
  • 13 Ramadhar TR. Kawakami J. Lough AJ. Batey RA. Org. Lett. 2010; 12: 4446
  • 14 For a review of catalysis of the Claisen rearrangement, see: Majumdar KC. Alam S. Chattopadhyay B. Tetrahedron 2008; 64: 597
  • 15 Trost BM. Toste FD. J. Am. Chem. Soc. 1998; 120: 815
  • 17 General Procedure for O-Aryl 2-Bromoallylic Ether Synthesis via Cu(II)-Catalyzed Arylation A suspension of ArBF3K, Cu(OAc)2·H2O (10 mol%), DMAP (20 mol%), and powdered 4Å MS in CH2Cl2 was stirred at rt for 5 min. To this suspension was added alcohol 6. The mixture was stirred at rt for 60–72 h under an O2 atmosphere. Subsequently, the mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The resultant crude mixture was purified using flash column chromatography on silica gel to afford aryl ether 7. Example Reaction of 6a (0.250 g, 1.4 mmol) with 4-FC6H4BF3K (0.601 g (95% purity), 2.8 mmol) using the general procedure afforded 7c (0.171 g, 45%) as a clear oil. Analytical Data for Compound 7c Rf = 0.43 (5% EtOAc/hexanes). IR (thin film): νmax = 3073, 3051, 2945, 2934, 2866, 2834, 1647, 1601, 1505, 1439, 1368, 1240, 1202, 1090, 1057, 999, 974, 914, 826, 785, 725 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.00–6.94 (4 H, m), 6.38 (1 H, dd, J = 5.0, 3.0 Hz), 4.64–4.62 (1 H, m), 2.27–2.19 (1 H, m), 2.14–2.04 (1 H, m), 1.86–1.74 (2 H, m), 1.70–1.61 (1 H, m). 13C NMR (100 MHz, CDCl3): δ = 158.0 (d, 1 J CF = 239.5 Hz), 154.4 (d, 4 J CF = 2.5 Hz), 135.0, 121.2, 118.6 (d, 3 J CF = 8.0 Hz), 116.1 (d, 2 J CF = 23.0 Hz), 78.0, 29.3, 28.0, 16.8. 19F NMR (376 MHz, CDCl3): δ = –123.41 (m). LRMS (EI+): m/z (rel. intensity) = 272 (5), 270 (5) [M]+, 161 (14), 160 (93), 159 (17), 158 (94), 112 (78), 79 (100). HRMS (EI+): m/z calcd for C12H12OFBr [M]+: 270.0056; found: 270.0061.
  • 18 General Procedure for the Aryl-Claisen Rearrangement of O-Aryl 2-Bromoallylic Ethers 7 to 8 A mixture of aryl ether 7 and Eu(fod)3 (5 mol%) in PhMe was stirred at 120–130 °C in a sealed tube for 24 h under an atmosphere of argon. The mixture was directly purified (without removal of the solvent under reduced pressure) by flash column chromatography on silica gel (gradient: hexanes – 25% EtOAc/ hexanes) to afford phenol 8. Example Reaction of 7c (0.050 g, 0.18 mmol) using the general procedure afforded 8c (0.048 g, 96%) as a white solid. Data for Compound 8c Mp 52–53 °C (EtOAc/hexanes); Rf = 0.53 (25% EtOAc/hexanes). IR (thin film with CDCl3): νmax = 3468 (br), 2928, 2860, 1644, 1620, 1597, 1504, 1434, 1332, 1260, 1172 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.89 (1 H, dd, J = 9.5, 3.0 Hz), 6.82 (1 H, ddd, J = 8.5, 8.0, 3.0 Hz), 6.70 (1 H, dd, J = 8.5, 4.5 Hz), 6.40 (1 H, ddd, J = 4.0, 4.0, 1.5 Hz), 4.81 (1 H, br s), 4.02–3.99 (1 H, m), 2.26–2.13 (2 H, m), 2.11–2.03 (1 H, m), 1.90–1.83 (1 H, m), 1.63–1.52 (2 H, m). 13C NMR (100 MHz, CDCl3): δ = 157.4 (d, 1 J CF = 237.5 Hz), 149.3 (d, 4 J CF = 2.5 Hz), 133.2, 131.0 (d, 3 J CF = 6.5 Hz), 123.5, 116.6 (d, 3 J CF = 8.0 Hz), 116.4 (d, 2 J CF = 24.0 Hz), 114.1 (d, 2 J CF = 23.0 Hz), 44.0, 31.1, 27.9, 18.0. 19F NMR (376 MHz, CDCl3): δ = –123.9 (ddd, J FH = 8.5, 8.5, 4.5 Hz). LRMS (EI+): m/z (rel. intensity) = 272 (5), 270 (6) [M]+, 191 (39), 163 (29), 149 (16), 133 (11), 125 (13), 109 (10), 86 (73), 84 (100). HRMS (EI+): m/z calcd for C12H12OBrF [M]+: 270.0056; found: 270.0059.
  • 19 CCDC 1558909 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 20 Molander GA. Felix LA. J. Org. Chem. 2005; 70: 3950
  • 21 Old DW. Wolfe JP. Buchwald SL. J. Am. Chem. Soc. 1998; 120: 9722
  • 22 Bartoli G. Bosco M. Carlone A. Dalpozzo R. Locatelli M. Melchiorre P. Sambri L. J. Org. Chem. 2006; 71: 9580