Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(07): 928-932
DOI: 10.1055/s-0036-1591540
DOI: 10.1055/s-0036-1591540
letter
Palladium(0)-Catalyzed Dearomatization of 2-Nitrobenzofurans through Formal (3+2) Cycloadditions with Vinylcyclopropanes: A Straightforward Access to Cyclopenta[b]benzofurans
This work was supported by the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche and the Centre National de la Recherche Scientifique.Further Information
Publication History
Received: 08 January 2018
Accepted after revision: 15 January 2018
Publication Date:
05 February 2018 (online)
Dedicated to Professor Miguel Yus on the occasion of his 70th birthday.
Abstract
In the context of the palladium-catalyzed dearomatization of electron-poor arenes, we report herein that various 2-nitrobenzofurans efficiently undergo a dearomative (3+2) cycloaddition with vinylcyclopropanes. This new method gives access to a wide variety of cyclopenta[b]benzofuran derivatives in a straightforward manner.
Key words
dearomatization - palladium(0) catalysis - (3+2) cycloaddition - nitrobenzofurans - vinylcyclopropanes - cyclopenta[b]benzofuransSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591540.
- Supporting Information
-
References and Notes
- 1a Roche SP. Porco JA. Angew. Chem. Int. Ed. 2011; 50: 4068
- 1b Pigge FC. Dearomatization Reactions: An Overview, In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. 1st ed. Mortier J. Wiley-VCH; New York: 2016
- 2a Zhuo CX. Zhang W. You SL. Angew. Chem. Int. Ed. 2012; 51: 12662
- 2b Ding Q. Zhou X. Fan R. Org. Biomol. Chem. 2014; 12: 4807
- 2c Wu W.-T. Zhang L. You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 2d Zheng C. You SL. Chem 2016; 1: 830
- 2e Asymmetric Dearomatization Reactions . You S.-L. Wiley-VCH; Weinheim: 2016. For selected examples, see
- 2f Wu QF. He H. Liu WB. You SL. J. Am. Chem. Soc. 2010; 132: 11418
- 2g Wu QF. Liu WB. Zhuo CX. Rong ZQ. Ye KY. You SL. Angew. Chem. Int. Ed. 2011; 50: 4455
- 2h Shibuya T. Noguchi K. Tanaka K. Angew. Chem. Int. Ed. 2012; 51: 6219
- 2i Zhu S. MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815
- 2j Nan J. Zuo Z. Luo L. Bai L. Zheng H. Yuan Y. Liu J. Luan X. Wang Y. J. Am. Chem. Soc. 2013; 135: 17306
- 2k Xiong H. Xu H. Liao S. Xie Z. Tang Y. J. Am. Chem. Soc. 2013; 135: 7851
- 2l Spangler JE. Davies HM. L. J. Am. Chem. Soc. 2013; 135: 6802
- 2m Zhang X. Yang Z.-P. Liu C. You S.-L. Chem. Sci. 2013; 4: 3239
- 2n Tong MC. Chen X. Li J. Huang R. Tao H. Wang CJ. Angew. Chem. Int. Ed. 2014; 53: 4680
- 2o Zi W. Wu H. Toste FD. J. Am. Chem. Soc. 2015; 137: 3225
- 2p Yang D. Wang L. Han F. Li D. Zhao D. Wang R. Angew. Chem. Int. Ed. 2015; 54: 2185
- 2q Li Z. Shi Y. Org. Lett. 2015; 17: 5752
- 3a Kimura M. Futamata M. Mukai R. Tamaru Y. J. Am. Chem. Soc. 2005; 127: 4592
- 3b Trost BM. Quancard J. J. Am. Chem. Soc. 2006; 128: 6314
- 3c García-Fortanet J. Kessler F. Buchwald SL. J. Am. Chem. Soc. 2009; 131: 6676
- 3d Rousseaux S. García-Fortanet J. Del Aguila Sanchez MA. Buchwald SL. J. Am. Chem. Soc. 2011; 133: 9282
- 3e Wu KJ. Dai LX. You SL. Org. Lett. 2012; 14: 3772
- 3f Nemoto T. Zhao Z. Yokosaka T. Suzuki Y. Wu R. Hamada Y. Angew. Chem. Int. Ed. 2013; 52: 2217
- 3g Xiao Q. Jackson JJ. Basak A. Bowler JM. Miller BG. Zakarian A. Nat. Chem. 2013; 5: 410
- 3h Xu Q.-L. Dai L.-X. You S.-L. Chem. Sci. 2013; 4: 97
- 4a Trost BM. Ehmke V. O’Keefe BM. Bringley DA. J. Am. Chem. Soc. 2014; 136: 8213
- 4b Laugeois M. Ling J. Férard C. Michelet V. Ratovelomanana-Vidal V. Vitale MR. Org. Lett. 2017; 19: 2266
- 4c Rivinoja DJ. Gee YS. Gardiner MG. Ryan JH. Hyland CJ. T. ACS Catal. 2017; 7: 1053
- 4d During the preparation of this manuscript, other palladium-catalyzed dearomative (3+2) cycloadditions of nitroaromatics have been described. For 2-nitrobenzofurans, see: Cheng Q. Zhang H.-J. Yue W.-J. You S.-L. Chem 2017; 3: 428
- 4e For 3-nitroindoles, see: Gee YS. Rivinoja DJ. Wales SM. Gardiner MG. Ryan JH. Hyland CJ. T. J. Org. Chem. 2017; 82: 13517
- 5a Roy S. Kishbaugh TL. S. Jasinski JP. Gribble GW. Tetrahedron Lett. 2007; 48: 1313
- 5b Lee S. Chataigner I. Piettre SR. Angew. Chem. Int. Ed. 2011; 50: 472
- 5c Lee S. Diab S. Queval P. Sebban M. Chataigner I. Piettre SR. Chem. Eur. J. 2013; 19: 7181
- 6a Ganesh V. Chandrasekaran S. Synthesis 2016; 48: 4347
- 6b Meazza M. Guo H. Rios R. Org. Biomol. Chem. 2017; 15: 2479
- 7 King ML. Chiang C.-C. Ling H.-C. Fujita E. Ochiai M. McPhail AT. J. Chem. Soc., Chem. Commun. 1982; 1150
- 8a Kim S. Salim AA. Swanson SM. Kinghorn AD. Anticancer Agents Med. Chem. 2006; 6: 319
- 8b Ribeiro N. Thuaud F. Nebigil C. Désaubry L. Bioorg. Med. Chem. 2012; 20: 1857
- 8c Zhao Q. Abou-Hamdan H. Désaubry L. Eur. J. Org. Chem. 2016; 5908
- 9a Davey AE. Taylor RJ. K. J. Chem. Soc., Chem. Commun. 1987; 25
- 9b Trost BM. Greenspan PD. Yang BV. Saulnier MG. J. Am. Chem. Soc. 1990; 112: 9022
- 9c Gerard B. Cencic R. Pelletier J. Porco JA. Angew. Chem. Int. Ed. 2007; 46: 7831
- 9d El Sous M. Khoo ML. Holloway G. Owen D. Scammells PJ. Rizzacasa MA. Angew. Chem. Int. Ed. 2007; 46: 7835
- 9e Malona JA. Cariou K. Frontier AJ. J. Am. Chem. Soc. 2009; 131: 7560
- 9f Magnus P. Freund WA. Moorhead EJ. Rainey T. J. Am. Chem. Soc. 2012; 134: 6140
- 9g Stone SD. Lajkiewicz NJ. Whitesell L. Hilmy A. Porco JA. J. Am. Chem. Soc. 2015; 137: 525
- 9h Zhou Z. Tius MA. Angew. Chem. Int. Ed. 2015; 54: 6037
- 9i Paz BM. Li Y. Thøgersen MK. Jørgensen KA. Chem. Sci. 2017; 8: 8086
- 10a Saito K. Ishihara H. Kagabu S. Bull. Chem. Soc. Jpn. 1987; 60: 4141
- 10b Fujita M. Oshima M. Okuno S. Sugimura T. Okuyama T. Org. Lett. 2006; 8: 4113
- 10c Qu J.-P. Liang Y. Xu H. Sun X.-L. Yu Z.-X. Tang Y. Chem. Eur. J. 2012; 18: 2196
- 10d Pérez-Vázquez J. Veiga AX. Prado G. Sardina FJ. Paleo MR. Eur. J. Org. Chem. 2012; 975
- 11 Tromelin A. Demerseman P. Royer R. Synthesis 1985; 1074
- 12a Lishanskii IS. Semenova LS. Polym. Sci. U.S.S.R. 1971; 13: 2657
- 12b Suzuki M. Sawada S. Saegusa T. Macromolecules 1989; 22: 1505
- 12c Suzuki M. Sawada S. Yoshida S. Eberhardt A. Saegusa T. Macromolecules 1993; 26: 4748
- 13 The relative stereochemistry of the major diastereoisomer of 3ae could not be established unambiguously by NOESY NMR experiments (see the Supporting Information).
- 14 Lyubchanskaya VM. Chernov GS. Granik VG. Chem. Heterocycl. Compd. 1989; 25: 589
- 15 Palladium-Catalyzed (3+2) Dearomatization of 2-Nitrobenzofurans with VCPs; General ProcedureIn a screw-capped vial, vinylcyclopropane (0.44 mmol, 1.1 equiv), 2-nitrobenzofuran (0.40 mmol, 1.0 equiv) and CH2Cl2 (800 μL) were successively added. The resulting mixture was stirred at r.t. for 5 min before a solution of Pd2(dba)3·CHCl3 (0.01 mmol, 0.025 equiv) and dppe (0.02 mmol, 0.05 equiv) in CH2Cl2 (800 μL), previously stirred at r.t. for 25 min, was transferred via cannula. The cannula was washed with an additional aliquot of CH2Cl2 (400 μL) (total volume of solvent = 2.0 mL) and the final reaction mixture was stirred at r.t. for 2 h. At this point, CH2Cl2 (10 mL) was added, the mixture was loaded onto a small silica plug, eluted with additional CH2Cl2 (40 mL) and concentrated under reduced pressure. After measurement of the diastereomeric ratio by 1H NMR spectroscopy, the resulting crude mixture was purified by flash column chromatography to afford the desired cycloadduct.7-Bromo-3a-nitro-3-vinyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-1,1-dicarbonitrile (3aa)Following the typical procedure, starting from 5-bromo-2-nitrobenzofuran (1a) (97 mg), compound 3aa was obtained as a white solid (126 mg, 88% yield, 1:1 dr) after flash column chromatography (toluene/petroleum ether, 6:4). Mp 162–164 °C; IR (film): 2359, 1560, 1509, 1365, 1313, 1243 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.73–7.45 (m, 4 H), 7.03 (dd, J = 9.0, 5.8 Hz, 2 H), 5.95–5.74 (m, 1 H), 5.74–5.56 (m, 1 H), 5.55–5.32 (m, 4 H), 4.96 (s, 1 H), 4.78 (s, 1 H), 4.10–3.90 (m, 1 H), 3.60–3.39 (m, 1 H), 3.05–2.91 (m, 2 H), 2.87 (ddd, J = 13.5, 5.8, 1.3 Hz, 1 H), 2.36 (t, J = 13.5 Hz, 1 H); 13C NMR (101 MHz, CDCl3): δ = 157.9, 157.6, 135.7, 135.4, 130.1, 128.1, 128.0, 127.6, 124.0, 123.5, 123.4, 121.8, 121.7, 121.2, 116.9, 116.6, 114.4, 113.5, 113.4, 112.7, 111.9, 111.6, 63.0, 60.4, 52.4, 51.3, 43.3, 41.1, 39.7, 38.5; MS (EI): m/z = 312 [M – HNO2]+•.
For reviews, see:
For reviews, see:
For representative examples, see:
For seminal works on the dearomatization of nitroarenes, see:
For recent reviews on the reactivity of vinylcyclopropanes, see:
For recent reviews on the preparation and biological activities of cyclopenta[b]benzofuran-containing compounds, see:
For selected examples, see:
For alternative dearomatization of benzofurans leading to cyclopenta[b]benzofurans, see: