Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(11): 1520-1524
DOI: 10.1055/s-0036-1591581
DOI: 10.1055/s-0036-1591581
letter
Palladium(0)-Catalyzed Alkylarylation of N-Alkyl-N-methacryloylbenzamides with Alkyl Iodides
We thank the National Science Foundation of China (NSF 21402066), the Natural Science Foundation of Jiangsu Province (BK20140139), and MOE&SAFEA for the 111 project (B13025) for financial support.Further Information
Publication History
Received: 31 January 2018
Accepted after revision: 06 April 2018
Publication Date:
17 May 2018 (online)
![](https://www.thieme-connect.de/media/synlett/201811/lookinside/thumbnails/st-2018-w0060-l_10-1055_s-0036-1591581-1.jpg)
Abstract
An efficient Pd(0)-catalyzed alkylarylation of N-alkyl-N-methacryloylbenzamides with alkyl iodides for the synthesis of isoquinoline-1,3-diones is described. A highlight of the method is its excellent functional-group tolerance. Mechanistic investigations suggest that a radical addition/cyclization process is probably involved in the sequences.
Key words
palladium catalysis - alkyl iodides - radical addition - alkylmethacryloylbenzamides - isoquinolinediones - alkylarylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591581.
- Supporting Information
-
References and Notes
- 1a Komoda M. Kakuta H. Takahashi H. Fujimoto Y. Kadoya S. Kato K. Hashimoto Y. Bioorg. Med. Chem. 2001; 9: 121
- 1b Chen Y.-L. Tang J. Kesler MJ. Sham YY. Vince R. Geraghty RJ. Wang Z. Bioorg. Med. Chem. 2012; 20: 467
- 1c Mayer SC. Banker AL. Boschelli F. Di L. Johnson M. Kenny CH. Krishnamurthy G. Kutterer K. Moy F. Petusky S. Ravi M. Tkach D. Tsou HR. Xu W. Bioorg. Med. Chem. Lett. 2008; 18: 3641
- 1d Vernekar SK. V. Liu Z. Nagy E. Miller L. Kirby KA. Wilson DJ. Kankanala J. Sarafianos ST. Parniak MA. Wang Z. J. Med. Chem. 2015; 58: 651
- 2a Li L. Zhao Y.-L. Wang H. Li Y.-J. Xu X. Liu Q. Chem. Commun. 2014; 50: 6458
- 2b Zhao W. Xie P. Zhang M. Niu B. Bian Z. Pittman C. Zhou A. Org. Biomol. Chem. 2014; 12: 7690
- 2c Kong W. Casimiro M. Fuentes N. Merino E. Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
- 2d Li L. Deng M. Zheng S.-C. Xiong Y.-P. Tan B. Liu X.-Y. Org. Lett. 2014; 16: 504
- 2e Tang S. Deng Y.-L. Li J. Wang W.-X. Ding G.-L. Wang M.-W. Xiao Z.-P. Wang Y.-C. Sheng R.-L. J. Org. Chem. 2015; 80: 12599
- 2f Zheng L. Yang C. Xu Z. Gao F. Xia W. J. Org. Chem. 2015; 80: 5730
- 2g Xia X.-F. Zhu S.-L. Chen C. Wang H. Liang Y.-M. J. Org. Chem. 2016; 81: 1277
- 2h Wu J. Gao Y. Zhao X. Zhang L. Chen W. Tang G. Zhao Y. RSC Adv. 2016; 6: 303
- 2i Zhu S.-L. Zhou P.-X. Xia X.-F. RSC Adv. 2016; 6: 63325
- 2j Tang Y. Zhang M. Li X. Xu X. Du X. Youji Huaxue 2015; 35: 875
- 2k Tang S. Deng Y.-L. Li J. Wang W.-X. Wang Y.-C. Li Z.-Z. Yuan L. Chen S.-L. Sheng R.-L. Chem. Commun. 2016; 52: 4470
- 2l Qian P. Du B. Jiao W. Mei H. Han J. Pan Y. Beilstein J. Org. Chem. 2016; 12: 301
- 2m Pan C. Chen C. Yu J.-T. Org. Biomol. Chem. 2017; 15: 1096
- 3a Chen QY. Yang ZY. Zhao CX. Qiu ZM. J. Chem. Soc., Perkin Trans. 1 1988; 563
- 3b Nagashima H. Isono Y. Iwamatsu S. J. Org. Chem. 2001; 66: 315
- 3c Chen C. Tong X. Org. Chem. Front. 2014; 1: 439
- 3d Monks BM. Cook SP. Angew. Chem. Int. Ed. 2013; 52: 14214
- 3e Liu Q. Dong X. Li J. Xiao J. Dong Y. Liu H. ACS Catal. 2015; 5: 6111
- 3f Jahn U. Top. Curr. Chem. 2012; 320: 323
- 3g Zhou W.-J. Zhang Y. Cao G. Liu H. Yu D.-G. Youji Huaxue 2017; 37: 1322
- 3h Fan J.-H. Wei W.-T. Zhou M.-B. Song R.-J. Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 6650
- 4 Curran DP. Chang C.-T. Tetrahedron Lett. 1990; 31: 933
- 5 Xiao B. Liu Z.-J. Liu L. Fu Y. J. Am. Chem. Soc. 2013; 135: 616
- 6a McMahon CM. Alexanian EJ. Angew. Chem. Int. Ed. 2014; 53: 5974
- 6b Zou Y. Zhou J. Chem. Commun. 2014; 50: 3725
- 6c Wu X. See JW. T. Xu K. Hirao H. Roger J. Hierso J.-C. Zhou J. Angew. Chem., Int. Ed. 2014; 53: 13573
- 7 Wang H. Guo L.-N. Duan X.-H. J. Org. Chem. 2016; 81: 860
- 8 Xia X.-F. Zhu S.-L. Li Y. Wang H. RSC Adv. 2016; 6: 51703
- 9 Kramer AV. Osborn JA. J. Am. Chem. Soc. 1974; 96: 7832
- 10 Isoquinoline-1,3-diones 3; General ProcedureAn oven-dried Schlenk tube (10 mL) equipped with a magnetic stirrer bar was charged with N-methacryloyl-N-methylbenzamide (1, 0.2 mmol), CyI (2, 0.4 mmol), 10% PdCl2(PPh3)2 (0.02 mmol), 20% DPE-phos (0.04 mmol), and K2CO3 (2 equiv). The tube was evacuated and backfilled with N2 three times. Toluene (2.0 mL) was then added from a syringe under N2, and the mixture was stirred for 18 h at 100 °C. The reaction was quenched with H2O (5 mL), and the resulting mixture was extracted with EtOAc (2 × 10 mL). The combined organic extracts were washed with brine, dried (Na2SO4), and concentrated. The crude product was purified by flash column chromatography [silica gel, PE–EtOAc (30:1)].4-(Cyclohexylmethyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3a)Colorless solid; yield: 45.0 mg (78%); mp 49–51 °C. IR KBr: 3070, 2918, 2848, 1708, 1663, 1615, 1590, 1356, 1306, 1092, 1055, 747, 693 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.25–8.27 (m, 1 H), 7.62–7.65 (m, 1 H), 7.40–7.45 (m, 2 H), 3.39 (s, 3 H), 2.31–2.36 (m, 1 H), 1.88–1.92 (m, 1 H), 1.56 (s, 3 H), 1.44–1.51 (m, 3 H), 1.23–1.26 (m, 1 H), 1.14–1.17 (m, 1 H), 0.73–1.00 (m, 6 H). 13C NMR (100 MHz, CDCl3): δ = 176.8, 164.4, 143.9, 133.7, 128.8, 127.1, 125.7, 124.5, 49.5, 46.6, 34.2, 32.9, 31.6, 27.1, 25.9. HRMS (ESI): m/z [M + Na]+ calcd for C18H23NNaO2: 308.16210; found: 308.16260.