Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(15): 2076-2080
DOI: 10.1055/s-0037-1610649
DOI: 10.1055/s-0037-1610649
letter
Transition-Metal-Free Synthesis of Thiosulfonates through Radical Coupling Reaction
This research is sponsored by the Natural Science Foundation of Zhejiang Province (No. LQ18B020002), State Key Laboratory of Analytical Chemistry for Life Science (No. SKLACLS1804), the Open Subject of State Key Laboratory of Chemo/Biosensing and Chemometrics (2017016), Education Foundation of Zhejiang Province (No. Y201737123), and the K. C. Wong Magna Fund in Ningbo University. Prof. Z.Y. Guo also thank the Natural Science Foundation of China (Grants 41576098, 81773483).Further Information
Publication History
Received: 03 June 2018
Accepted after revision: 03 July 2018
Publication Date:
02 August 2018 (online)
◊ These authors contributed equally to this work
Abstract
An efficient and practical transition-metal-free radical coupling reaction of sulfonyl hydrazides mediated by NIS/K2S2O8 has been developed to afford a variety of biological activity thiosulfonates in moderate to excellent yields. Compared to a known approach for the synthesis of thiosulfonates from sulfonyl hydrazides, this strategy features high yields, mild reaction conditions, and broad substrate scope. The mechanistic studies revealed that the procedure undergoes via a radical cross-coupling process for the construction of S–S bonds.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610649.
- Supporting Information
-
References and Notes
- 1a Acton A. Pharmaceuticals – Advances in Research and Application. Scholarly editions; Atlanta, GA: 2012
- 1b Natarajan P. Tetrahedron Lett. 2015; 56: 4131
- 1c Iranpoor N. Mohajer D. Rezaeifard A.-R. Tetrahedron Lett. 2004; 45: 3811
- 2a Andrushko V. Andrushko N. Stereoselective Synthesis of Drugs and Natural Products. John Wiley and Sons; New York: 2013
- 2b Zefirov NS. Zyk NV. Beloglaskina EK. Kutateladze AG. Sulfur Rep. 1993; 14: 223
- 3a Kirihara M. Naito S. Ishizuka Y. Hanai H. Noguchi T. Tetrahedron Lett. 2011; 52: 3086
- 3b Abdo M. Knapp S. J. Org. Chem. 2012; 77: 3433
- 3c Xu Y. Peng Y. Sun J. Chen J. Ding J. Wu H. J. Chem. Res. 2010; 41: 358
- 4a Iranpoor N. Mohajer D. Rezaeifard AR. Tetrahedron Lett. 2004; 45: 3811
- 4b Iranpoor N. Firouzabadi H. Pourali A. Phosphorus, Sulfur Silicon Relat. Elem. 2006; 181: 473
- 4c Bahrami K. Khodaei MM. Khaledian D. Tetrahedron Lett. 2012; 53: 354
- 4d Nair V. Augustine A. Org. Lett. 2003; 4: 543
- 4e Sobhani S. Aryanejad S. Maleki MF. Synlett 2011; 319
- 5a Liang GA. Chen J. Chen J. Li W. Chen J. Wu H. Tetrahedron Lett. 2012; 53: 6768
- 5b Taniguchi N. J. Org. Chem. 2015; 80: 1764
- 5c Tranquilino A. Andrade SR. C. P. Silva AP. M. Menezes PH. Roberta AO. Tetrahedron Lett. 2017; 58: 1265
- 6 Li X.-J. Zhou C. Diao P.-H. Ge Y.-Q. Guo C. Tetrahedron Lett. 2017; 58: 1296
- 7 Zhang G.-Y. Lv S.-S. Shoberu A. Zou J.-P. J. Org. Chem. 2017; 82: 9801
- 8a Liu Y.-W. Badsara SS. Liu Y.-C. Lee C.-F. RSC Adv. 2015; 5: 44299
- 8b Zhang X.-S. Jiao J.-Y. Zhang X.-H. Hu B.-L. Zhang X.-G. J. Org. Chem. 2016; 81: 5710
- 8c Chen JC. Wang TY. Wang T. Lin AJ. Yao HQ. Xu JY. Org. Chem. Front. 2016; 4: 130
- 8d Ji P.-Y. Zhang M.-Z. Xu J.-W. Liu Y.-F. Guo C.-C. J. Org. Chem. 2016; 81: 5181
- 8e Sen C. Sahoo T. Ghosh SC. ChemistrySelect 2017; 2: 2745
- 8f Wu Y.-D. Huang B. Zhang Y.-X. Wang X.-X. Dai J.-J. Xu J. Xu H.-J. Org. Biomol. Chem. 2016; 14: 5936
- 9 Finkbeiner P. Nachtsheim BJ. Synthesis 2013; 45: 979
- 10a Wei W.-T. Zhu W.-M. Shao QJ. Bao W.-H. Chen W.-T. Chen G.-P. Luo Y.-J. Liang HZ. ACS Sustainable Chem. Eng. 2018; 6: 8029
- 10b Wei W.-T. Zhu W.-M. Ying W.-W. Wang Y.-N. Bao W.-H. Gao L.-H. Luo Y.-J. Liang HZ. Adv. Synth. Catal. 2017; 359: 3551
- 10c Wei W.-T. Zhu W.-M. Ying W.-W. Wu Y. Huang Y.-L. Liang HZ. Org. Biomol. Chem. 2017; 15: 5254
- 10d Wei W.-T. Zhu W.-M. Liang WD. Wu Y. Huang H.-Y. Huang Y.-L. Luo F.-J. Liang HZ. Synlett 2017; 28: 2153
- 10e Ying W.-W. Zhu W.-M. Gao Z.-H. Liang HZ. Wei W.-T. Synlett 2018; 29: 663
- 11 General Procedure To a Schlenk tube were added sulfonyl hydrazides (0.3 mmol), NIS (0.06 mmol), K2S2O8 (0.36 mmol), and THF (2 mL). Then the tube was stirred open in air at 70 °C for the indicated time until complete consumption of starting material as monitored by TLC analysis. After the reaction was finished, the solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate) to afford the desired product 2 and was analyzed by 1H NMR and 13C NMR spectroscopy (see Supporting Information). Typical Data for Representative Compound: S-(p-Tolyl)4-methylbenzenesulfonothioate (2a) Yellow oil (36.3 mg, 87% yield). 1H NMR (400 MHz, DMSO-d 6): δ = 7.45 (d, J = 7.6 Hz, 2 H), 7.38 (d, J = 7.6 Hz, 2 H), 7.26–7.20 (m, 4 H), 2.40 (s, 3 H), 2.34 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 145.6, 142.6, 140.1, 136.5, 130.9, 130.3, 127.6, 124.2, 21.6, 21.4.
- 12 Singh R. Allam BK. Singh N. Kumari KK. Singh SK. Singh KN. Org. Lett. 2015; 17: 2656
- 13 Cao X. Cheng X. Xuan J. Org. Lett. 2018; 20: 449
- 14a Liu Y. Zheng GF. Zhang Q. Li Y. Zhang Q. J. Org. Chem. 2017; 82: 2269
- 14b Wang SC. Huang XH. Wang Q. Ge ZM. Wang X. Li RT. RSC Adv. 2016; 6: 11754
- 14c Zhao WN. Xie P. Bian ZG. Zhou AH. Ge HB. Zhang M. Ding YC. Zheng L. J. Org. Chem. 2015; 80: 9167
- 14d Wang F.-X. Tian S.-K. J. Org. Chem. 2015; 80: 12697
- 14e Bao Y. Yang XQ. Zhou QF. Yang FL. Org. Lett. 2018; 20: 1966
- 14f Liang GG. Liu MC. Chen JX. Ding JC. Gao WX. Wu HY. Chin. J. Chem. 2012; 30: 1611
- 14g Liang GG. Chen J. Chen JL. Li WM. Chen JX. Wu HY. Tetrahedron Lett. 2012; 53: 6768
- 14h Taniguchi N. Eur. J. Org. Chem. 2014; 5691
For selected book and papers, see:
For selected book and paper, see:
For selected papers, see:
For selected papers, see:
For selected papers, see:
For selected papers, see:
For selected papers, see: