Synlett 2018; 29(17): 2293-2297
DOI: 10.1055/s-0037-1611054
letter
© Georg Thieme Verlag Stuttgart · New York

Dimethylisosorbide (DMI) as a Bio-Derived Solvent for Pd-Catalyzed Cross-Coupling Reactions

Kirsty L. Wilson
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
,
Jane Murray
b   Merck KgaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
,
Helen F. Sneddon
c   Green Chemistry Performance Unit, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
,
Craig Jamieson
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
,
d   EastChem, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK   Email: aw260@st-andrews.ac.uk
› Author Affiliations
We thank the University of Strathclyde for a PhD studentship (KLW) and Merck KGaA, Darmstadt, Germany, for financial and material support.
Further Information

Publication History

Received: 09 August 2018

Accepted after revision: 04 September 2018

Publication Date:
28 September 2018 (online)


Abstract

Palladium-catalyzed bond-forming reactions, such as the ­Suzuki–Miyaura and Mizoroki–Heck reactions, are some of the most broadly utilized reactions within the chemical industry. These reactions frequently employ hazardous solvents; however, to adhere to increasing sustainability pressures and restrictions regarding the use of such solvents, alternatives are highly sought after. Here we demonstrate the utility of dimethyl isosorbide (DMI) as a bio-derived solvent in several benchmark Pd-catalyzed reactions: Suzuki–Miyaura (13 examples, 62–100% yield), Mizoroki–Heck (13 examples, 47–91% yield), and Sonogashira (12 examples, 65–98% yield).

Supporting Information

 
  • References and Notes

  • 1 Jessop PG. Green Chem. 2011; 13: 1391
  • 2 Clark JH. Tavener SJ. Org. Process Res. Dev. 2007; 11: 149
  • 3 Welton T. Proc. R. Soc. A 2015; 471: 1
  • 4 Dunn PJ. Chem. Soc. Rev. 2012; 41: 1452
  • 5 Roschangar F. Colberg J. Dunn PJ. Gallou F. Hayler JD. Koenig SG. Kopach ME. Leahy DK. Mergelsberg I. Tucker JL. Sheldon RA. Senanayake CH. Green Chem. 2016; 19: 281
  • 6 Constable DJ. C. Dunn PJ. Hayler JD. Humphrey GR. Leazer JL. Linderman RJ. Lorenz K. Manley J. Pearlman BA. Wells A. Zaks A. Zhang TY. Green Chem. 2007; 9: 411
  • 7 Tobiszewski M. Namieśnik J. Pena-Pereira F. Green Chem. 2017; 19: 1034
  • 8 Alder CM. Hayler JD. Henderson RK. Redman AM. Shukla L. Shuster LE. Sneddon HF. Green Chem. 2016; 18: 3879
  • 9 Byrne FP. Jin S. Paggiola G. Petchey TH. M. Clark JH. Farmer TJ. Hunt AJ. McElroy CR. Sherwood J. Sustainable Chem. Processes 2016; 4: 7
  • 10 Diorazio LJ. Hose DR. J. Adlington NK. Org. Process Res. Dev. 2016; 20: 760
  • 11 Eastman HE. Jamieson C. Watson AJ. B. Aldrichimica Acta 2015; 48: 51
  • 12 Prat D. Wells A. Hayler J. Sneddon HF. McElroy CR. Abou-Shehada S. Dunn PJ. Green Chem. 2015; 18: 288
  • 13 Skowerski K. Białecki J. Tracz A. Olszewski TK. Green Chem. 2014; 16: 1125
  • 14 eChemPortal – Home: http://www.echemportal.org/echemportal/substancesearch/page.action?pageID=0 (accessed October 2017).
  • 15 Candidate List of substances of very high concern for authorisation - ECHA, https://echa.europa.eu/candidate-list-table, (accessed October 2017).
  • 16 Horváth IT. Green Chem. 2008; 10: 1024
  • 17 Spear SK. Griffin ST. Granger KS. Huddleston JG. Rogers RD. Green Chem. 2007; 9: 1008
  • 18 Gu Y. Jérôme F. Green Chem. 2010; 12: 1127
  • 19 Pace V. Hoyos P. Castoldi L. Dominguez de Maria P. Alecantara AR. ChemSusChem 2012; 5: 1369
  • 20 Lomba L. Giner B. Bandrés I. Lafuente C. Pino R. Green Chem. 2011; 13: 2062
  • 21 Pereira CS. M. Silva VM. T. M. Rodrigues AE. Green Chem. 2011; 13: 2658
  • 22 Alonso DM. Wettstein SG. Dumesic JA. Green Chem. 2013; 15: 584
  • 23 Byrne F. Forier B. Bossaert G. Hoebers C. Farmer TJ. Clark JH. Hunt AJ. Green Chem. 2017; 19: 3671
  • 24 Ilgen F. König B. Green Chem. 2009; 11: 848
  • 25 Imperato G. Vasold R. König B. Adv. Synth. Catal. 2006; 348: 2243
  • 26 Pongrácz P. Kollár L. Mika LT. Green Chem. 2016; 18: 842
  • 27 Ismalaj E. Strappaveccia G. Ballerini E. Elisei F. Piermatti O. Gelman D. Vaccaro L. ACS Sustainable Chem. Eng. 2014; 2: 2461
  • 28 Strappaveccia G. Luciani L. Bartollini E. Marrocchi A. Pizzo F. Vaccaro L. Green Chem. 2015; 17: 1071
  • 29 Rasina D. Kahler-Quesada A. Ziarelli S. Warratz S. Cao H. Santoro S. Ackermann L. Vaccaro L. Green Chem. 2016; 18: 5025
  • 30 Strappaveccia G. Ismalaj E. Petrucci C. Lanari D. Marrocchi A. Drees M. Facchetti A. Vaccaro L. Green Chem. 2014; 17: 365
  • 31 Wilson KL. Kennedy AR. Murray J. Greatrex B. Jamieson C. Watson AJ. B. Beilstein J. Org. Chem. 2016; 12: 2005
  • 32 Wilson KL. Murray J. Jamieson C. Watson AJ. B. Synlett 2018; 29: 650
  • 33 Wilson KL. Murray J. Jamieson C. Watson AJ. B. Org. Biomol. Chem. 2018; 16: 2851
  • 34 Camp JE. ChemSusChem 2018; 11 in press; DOI:
  • 35 Aricò F. Tundo P. Beilstein J. Org. Chem. 2016; 12: 2256
  • 36 Aricò F. Aldoshin A. Tundo P. ChemSusChem 2016; 10: 53
  • 37 Desai NP. Tao C. Yang A. Beal-Grim B. De T. Soon-Shiong P. US 0171687, 2008
  • 38 Luzzi LA. Ma JK. H. US 4228162, 1980
  • 39 Salavagione HJ. Sherwood J. De Bruyn M. Budarin VL. Ellis GK. Clark JH. Shuttleworth PS. Green Chem. 2017; 19: 2550
  • 40 Lawreson S. North M. Peigneguy F. Routledge A. Green Chem. 2017; 19: 952
  • 41 Jad YE. Govender T. Kruger HG. El-Faham A. de la Torre BG. Albericio F. Org. Process Res. Dev. 2017; 21: 365
  • 42 King AO. Yasuda N. Palladium-Catalyzed Cross-Coupling Reactions in the Synthesis of Pharmaceuticals. Springer; Heidelberg: 2004
  • 43 Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 44 Roughley SD. Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 45 Brown DG. Boström J. J. Med. Chem. 2016; 59: 4443
  • 46 Blakemore DC. Doyle PM. Fobian YM. Synthetic Methods in Drug Discovery . Royal Society of Chemistry; Cambridge: 2016
  • 47 Ohe T. Miyaura N. Suzuki A. J. Org. Chem. 1993; 58: 2201
  • 48 Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
  • 49 Oestreich M. The Mizoroki–Heck Reaction . Wiley; Chichester: 2009
  • 50 Chinchilla R. Nájera C. Chem. Rev. 2007; 107: 874
  • 51 Sigma-Aldrich, Cross-Coupling Reaction Manual: Desk Reference, https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/Method/1/83784-Cross-Coupling-Selection-Brochure.pdf (accessed August 2018).
  • 52 Fyfe JW. B. Valverde E. Seath CP. Kennedy AR. Redmond JM. Anderson NA. Watson AJ. B. Chem. Eur. J. 2015; 21: 8951
  • 53 Australian NICNAS: Regulatory Information on DMI https://www.nicnas.gov.au/search?query=arlasolve+dmi&collection=nicnas-meta (accessed August 2018).
  • 54 General Procedure for Suzuki–Miyaura Coupling in DMI To an oven-dried 5 mL microwave vessel was added Pd(dppf)Cl2·CH2Cl2 (4 mol%), aryl halide/pseudohalide (1 equiv.), organoboron (1 equiv.), and K3PO4 (3 equiv.). The vessel was then capped and purged with N2 before addition of DMI (1 mL, 0.25 M) and H2O (5 equiv.). The reaction mixture was heated to 60 °C and maintained at this temperature with stirring for 1 h before the vessel was vented and decapped. The solution was then diluted with EtOAc (10 mL) and washed with water (2 × 20 mL) and brine (2 × 20 mL). The organics were then passed through a hydrophobic frit and concentrated under reduced pressure to give a residue, which was purified by flash chromatography (silica gel) to afford the product. 4-Phenyltoluene (3a) Prepared according to the General Procedure using Pd(dppf)Cl2·CH2Cl2 (8.2 mg, 0.01 mmol, 4 mol%), bromotoluene (1a, 43 mg, 0.25 mmol, 1 equiv.), phenylboronic acid (2a, 30.5 mg, 0.25 mmol, 1 equiv.), K3PO4 (159 mg, 0.75 mmol, 3 equiv.), DMI (1 mL, 0.25 M), and H2O (23 μL, 1.25 mmol, 5 equiv.). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0–5% EtOAc in petroleum ether) to afford the title compound as a white solid (42.9 mg, quant.). 1H NMR (400 MHz, CDCl3): δ = 7.62 (dd, J = 8.3, 1.2 Hz, 2 H), 7.53 (d, J = 8.1 Hz, 2 H), 7.46 (t, J = 7.6 Hz, 2 H), 7.38–7.33 (m, 1 H), 7.29 (d, J = 7.9 Hz, 2 H), 2.43 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 141.3, 138.5, 137.2, 129.6, 128.9, 127.1, 21.2.
  • 55 General Procedure for Mizoroki–Heck Coupling in DMI To an oven-dried 5 mL microwave vessel was added Pd(dppf)Cl2·CH2Cl2 (5 mol%) and aryl halide (1 equiv.). The vessel was capped and purged with N2 before addition of DMI (1 mL, 0.25 M), alkene coupling partner (2 equiv.), and Et3N (3 equiv.). The reaction mixture was heated to either 80 °C (X = I) or 115 °C (X = Br) and maintained at this temperature with stirring for 1 h (X = I) or 24 h (X = Br) before the vessel was vented and decapped. The solution was then diluted with EtOAc (10 mL) and washed with water (2 × 20 mL) and brine (2 × 20 mL). The organics were then passed through a hydrophobic frit and concentrated under reduced pressure to give a residue, which was purified by flash chromatography (silica gel) to afford the product. Methyl Cinnamate (6a) Prepared according to the General Procedure using Pd(dppf)Cl2·CH2Cl2 (10.2 mg, 0.013 mmol, 5 mol%), iodobenzene (4a, 28 μL, 0.25 mmol, 1 equiv.), methyl acrylate (5a, 45 μL, 0.5 mmol, 2 equiv.), Et3N (105 μL, 0.75 mmol, 3 equiv.), DMI (1 mL, 0.25 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0–5% EtOAc in petroleum ether) to afford the title compound as a white solid (40 mg, 99%). 1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 16.0 Hz, 1 H), 7.53 (dd, J = 6.6, 2.8 Hz, 2 H), 7.41–7.37 (m, 3 H), 6.45 (d, J = 16.0 Hz, 1 H), 3.81 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 167.6, 145.0, 134.6, 130.4, 129.0, 128.2, 117.9, 51.8.
  • 56 General Procedure for Sonogashira Coupling in DMI To an oven-dried 5 mL microwave vessel was added Pd(PPh3)2Cl2 (2 mol%), aryl halide (1 equiv.), and alkyne coupling partner (1.05 equiv.). The vessel was capped and purged with N2 before addition of DMI (0.5 mL, 0.5 M), and Et3N (1.1 equiv.). The reaction mixture was maintained at room temperature (25 °C) with stirring for 1 h before the vessel was vented and decapped. The solution was then diluted with EtOAc (10 mL) and washed with water (2 × 20 mL) and brine (2 × 20 mL). The organics were then passed through a hydrophobic frit and concentrated under reduced pressure to give a residue, which was purified by flash chromatography (silica gel) to afford the product. 1-Fluoro-4-(phenylethynyl)benzene (9a) Prepared according to the General Procedure using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol%), 4-fluoroiodobenzene (7a, 29 μL, 0.25 mmol, 1 equiv.), phenylacetylene (8a, 29 μL, 0.26 mmol, 1.05 equiv.), Et3N (38 μL, 0.28 mmol, 1.1 equiv.), DMI (0.5 mL, 0.5 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0–5% EtOAc in petroleum ether) to afford the title compound as a white solid (45 mg, 92%). 1H NMR (500 MHz, CDCl3): δ = 7.55–7.50 (m, 4 H), 7.38–7.33 (m, 3 H), 7.05 (t, J = 8.7 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 162.7 (d, 1 J = 249.6 Hz), 133.6 (d, 3 J = 8.2 Hz), 131.7, 128.5, 128.5, 123.3, 119.5 (d, 4 J = 3.4 Hz), 115.8 (d, 2 J = 22.4 Hz), 89.2, 88.4. 19F NMR (471 MHz, CDCl3): δ = –110.98.