Subscribe to RSS
DOI: 10.1055/s-0037-1611478
Carbonylated Indoles from PdII-Catalyzed Intermolecular Reactions of Indolyl Cores
Publication History
Received: 05 February 2019
Accepted after revision: 14 March 2019
Publication Date:
02 May 2019 (online)
Abstract
This review summarizes palladium-catalyzed carbonylation, transmetalation, and cross-coupling reactions that lead to carbonylated indoles from indoles and indolyl compounds. Special attention is drawn to procedures involving the C(sp2)–H substitution of free (NH)-indoles or (N-substituted)-indoles. Proposed mechanisms are described with, in some cases, personal comments.
1 Introduction
2 Carbonylative Reactions
2.1 Indolyl Halides as Starting Substrates
2.2 Indolyl Iodides as Intermediates
2.3 Indolylborates as Intermediates
2.4 C(sp2)–H Reactions
2.4.1 Carboxylation
2.4.2 Carbonylative Alkoxylation
2.4.3 Carbonylative Arylation
2.4.4 Carbonylative Alkenylation
2.4.5 Carbonylative Alkylation
2.4.6 Double Carbonylation
3 Cross-Coupling of Stannyl- or Mercurioindoles
4 Cross-Coupling of Indoles
4.1 Aldehydes
4.2 Alcohols
4.3 α-Diketones
4.4 α-Oxo Esters
4.5 α-Oxocarboxylic Acids
4.6 Nitriles
4.7 Isocyanides
4.8 Isothiocyanates and Isocyanates
4.9 α-Aminocarbonyl Compounds
4.10 Vinyl Ethers or Vinyl Amides
4.11 Toluene and Substituted Toluenes
4.12 Bromodichloromethane
5 Conclusion
-
References
- 1a Bandini M, Melloni A, Tommasi S, Umani-Ronchi A. Synlett 2005; 1199
- 1b Joucla L, Djakovitch L. Adv. Synth. Catal. 2009; 351: 673
- 1c Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 1d Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
- 1e Shiri M. Chem. Rev. 2012; 112: 3508
- 1f Lancianesi S, Palmieri A, Petrini M. Chem. Rev. 2014; 114: 7108
- 1g Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
- 1h Petrini M. Chem. Eur. J. 2017; 23: 16115
- 1i Ziarani GM, Moradi R, Ahmadi T, Lashgari N. RSC Adv. 2018; 8: 12069
- 1j Pirovano V. Eur. J. Org. Chem. 2018; 1925
- 1k Ieronimo G, Palmisano G, Maspero A, Marzorati A, Scapinello L, Masciocchi N, Cravotto G, Barge A, Simonetti M, Ameta KL, Nicholas KM, Penoni A. Org. Biomol. Chem. 2018; 16: 6853
- 2a Norman MH, Navas FIII, Thompson JB, Rigdon GC. J. Med. Chem. 1996; 39: 4692
- 2b Thurmond RL, Desai PJ, Dunford PJ, Fung-Leung W.-P, Hofstra CL, Jiang W, Nguyen S, Riley JP, Sun S, Williams KN, Edwards JP, Karlsson L. J. Pharmacol. Exp. Ther. 2004; 309: 404
- 2c Pedras MS. C, Yaya EE, Glawischnig E. Nat. Prod. Rep. 2011; 28: 1381
- 2d Sravanthi TV, Manju SL. Eur. J. Pharm. Sci. 2016; 91: 1
- 2e Chadha N, Silakari O. Eur. J. Med. Chem. 2017; 134: 159
- 2f Ciulla MG, Kumar K. Tetrahedron Lett. 2018; 59: 3223
- 3a Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
- 3b Lang R, Xia C, Li F. New J. Chem. 2014; 38: 2732
- 3c Wu X.-F. Chem. Eur. J. 2015; 21: 12252
- 3d Yao S.-J, Ren Z.-H, Guan Z.-H. Tetrahedron Lett. 2016; 57: 3892
- 3e Sharma S, Mishra NK, Shin Y, Kim IS. Curr. Org. Chem. 2016; 20: 471
- 3f Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
- 3g Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
- 3h Wegmann M, Henkel M, Bach T. Org. Biomol. Chem. 2018; 16: 5376
- 3i Shah TA, De P B, Pradhan S, Punniyamurthy T. Chem. Commun. 2019; 55: 572
- 4 Grimster NP, Gauntlett C, Godfrey CR. A, Gaunt MJ. Angew. Chem. Int. Ed. 2005; 44: 3185
- 5 Stuart DR, Villemure E, Fagnou K. J. Am. Chem. Soc. 2007; 129: 12072
- 6 Joucla L, Batail N, Djakovitch L. Adv. Synth. Catal. 2010; 352: 2929
- 7 Pi J.-J, Lu X.-Y, Liu J.-H, Lu X, Xiao B, Fu Y, Guimond N. J. Org. Chem. 2018; 83: 5791
- 8 Moncea O, Poinsot D, Fokin AA, Schreiner PR, Hierso J.-C. ChemCatChem 2018; 10: 2915
- 9 Potavathri S, Pereira KC, Gorelsky SI, Pike A, LeBris AP, DeBoef B. J. Am. Chem. Soc. 2010; 132: 14676
- 10 Li Y, Wang W.-H, He K.-H, Shi Z.-J. Organometallics 2012; 31: 4397
- 11 Tokuyama H, Kaburagi Y, Chen X, Fukuyama T. Synthesis 2000; 429
- 12 Zhao M.-N, Ran L, Chen M, Ren Z.-H, Wang Y.-Y, Guan Z.-H. ACS Catal. 2015; 5: 1210
- 13 Karpov AS, Merkul E, Rominger F, Müller TJ. J. Angew. Chem. Int. Ed. 2005; 44: 6951
- 14 Herbert JM, McNeill AH. Tetrahedron Lett. 1998; 39: 2421
- 15 Buscemi G, Miller PW, Kealey S, Gee AD, Long NJ, Passchier J, Vilar R. Org. Biomol. Chem. 2011; 9: 3499
- 16 Kumar K, Zapf A, Michalik D, Tillack A, Heinrich T, Böttcher H, Arlt M, Beller M. Org. Lett. 2004; 6: 7
- 17 Takács A, Marosvölgyi-Haskó D, Kabak-Solt Z, Damas L, Rodrigues FM. S, Carrilho RM. B, Pineiro M, Pereira MM, Kollár L. Tetrahedron 2016; 72: 247
- 18 Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2011; 133: 13577
- 19 Lang R, Shi L, Li D, Xia CG, Li FW. Org. Lett. 2012; 14: 4130
- 20 Li D, Shan S, Shi L, Lang R, Xia CG, Li FW. Chin. J. Catal. 2013; 34: 185
- 21 Xing Q, Shi L, Lang R, Xia CG, Li FW. Chem. Commun. 2012; 48: 11023
- 22 Tu D, Luo J, Jiang C. Chem. Commun. 2018; 54: 2514
- 23 Ishikura M, Terashima M. J. Org. Chem. 1994; 59: 2634
- 24 Ishikura M, Imaizumi K, Katagiri N. Heterocycles 2000; 53: 2201
- 25 Ishikura M, Uchiyama H, Matsuzaki N. Heterocycles 2001; 55: 1063
- 26 Ishikura M, Matsuzaki Y, Agata I. Chem. Commun. 1996; 2409
- 27 Itahara T. Chem. Lett. 1982; 1151
- 28 Lang R, Wu J, Shi L, Xia C, Li F. Chem. Commun. 2011; 47: 12553
- 29 Zhang H, Liu D, Chen C, Liu C, Lei A. Chem. Eur. J. 2011; 17: 9581
- 30a Larock RC, Hightower TR. J. Org. Chem. 1993; 58: 5298
- 30b Muzart J. In Comprehensive Organic Synthesis, 2nd ed., Vol. 7. Molander GA, Knochel P. Elsevier; Oxford: 2014: 295-301
- 31 Tjutrins J, Arndtsen BA. J. Am. Chem. Soc. 2015; 137: 12050
- 32 Bis(indolyl)arylmethanes have been obtained using formic acid as CO source: Qi X, Ai H.-J, Zhang N, Peng J.-B, Ying J, Wu X.-F. J. Catal. 2018; 362: 74
- 33 Nadres ET, Lazareva A, Daugulis O. J. Org. Chem. 2011; 76: 471
- 34 Liégault B, Petrov I, Gorelsky SI, Fagnou K. J. Org. Chem. 2010; 75: 1047
- 35 Liu J, Wei Z, Jiao H, Jackstell R, Beller M. ACS Cent. Sci. 2018; 4: 30
- 36 Ketcha DM, Gribble GW. J. Org. Chem. 1985; 50: 5451
- 37 Zeng F, Alper H. Org. Lett. 2013; 15: 2034
- 38 The positive charge of intermediate 21D is missing in the original paper.
- 39 For the formation of η3-allyl palladium complexes from allyl alcohols and their reactivity, see: Muzart J. Tetrahedron 2005; 61: 4179
- 40a Kimura M, Futamata M, Mukai R, Tamaru Y. J. Am. Chem. Soc. 2005; 127: 4592
- 40b Tseng Y.-L, Liang M.-C, Chen I.-C, Wu Y.-K. Synlett 2018; 29: 609
- 41 Wang Z, Yin Z, Wu X.-F. Chem. Commun. 2018; 54: 4798
- 42 Hegedus LS, Sestrick MR, Michaelson ET, Harrington PJ. J. Org. Chem. 1989; 54: 4141
- 43 Harrington PJ, Hegedus LS. J. Org. Chem. 1984; 49: 2657
- 44 Larock RC, Bernhardt JC. J. Org. Chem. 1978; 43: 710
- 45a Beak P, Lee WK. J. Org. Chem. 1993; 58: 1109
- 45b Hodson FM, Madge DJ, Slawin AN. Z, Widdowson DA, Williams DJ. Tetrahedron 1994; 50: 1899
- 46 Labadie SS, Teng E. J. Org. Chem. 1994; 59: 4250
- 47 Soley R, Albericio F, Álvarez M. Synthesis 2007; 1559
- 48 Labadie JW, Stille JK. J. Am. Chem. Soc. 1983; 105: 6129
- 49 Kianmehr E, Kazemi S, Foroumadi A. Tetrahedron 2014; 70: 349
- 50 Yan X.-B, Shen Y.-W, Chen D.-Q, Gao P, Li Y.-X, Song X.-R, Liu X.-Y, Liang Y.-M. Tetrahedron 2014; 70: 7490
- 51 Li D, Wang M, Liu J, Zhao Q, Wang L. Chem. Commun. 2013; 49: 3640
- 52 Zhang H.-J, Wu Z, Lin W, Wen T.-B. Chin. J. Chem. 2015; 33: 517
- 53 Wang W, Liu J, Gui Q, Tan Z. Synlett 2015; 26: 771
- 54 Sharma UK, Gemoets HP, Schröder F, Noël T, Van der Eycken EV. ACS Catal. 2017; 7: 3818
- 55 Manna MK, Bairy G, Jana R. Org. Biomol. Chem. 2017; 15: 5899
- 56 Kumar G, Sekar G. RSC Adv. 2015; 5: 28292
- 57 Jiang H, Gao S, Xu J, Wu X, Lin A, Yao H. Adv. Synth. Catal. 2016; 358: 188
- 58 Hu Q, Liu X, Huang F, Wang F, Li Q, Zhang W. Catal. Commun. 2018; 113: 27
- 59 Luo J, Gao S, Ma Y, Ge G. Synlett 2018; 29: 969
- 60 Kothandapani J, Reddy SM. K, Thamotharan S, Kumar SM, Byrappa K, Ganesan SS. Eur. J. Org. Chem. 2018; 2762
- 61 Li C, Zhu W, Shu S, Wu X, Liu H. Eur. J. Org. Chem. 2015; 3743
- 62 Pd-catalyzed C3-alkylation of indoles with alcohols has been reported under non-oxidative conditions: Putra AE, Takigawa K, Tanaka H, Ito Y, Oe Y, Ohta T. Eur. J. Org. Chem. 2013; 6344
- 63 Park J, Kim A, Sharma S, Kim M, Park E, Jeon Y, Lee Y, Kwak JH, Jung YH, Kim IS. Org. Biomol. Chem. 2013; 11: 2766
- 64 Yu L, Li P, Wang L. Chem. Commun. 2013; 49: 2368
- 65 Pan C, Jin H, Liu X, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 2933
- 66 The decarboxylation could be mediated by the Ag2O/K2S2O8 association: Mandal S, Bera T, Dubey G, Saha J, Laha JK. ACS Catal. 2018; 8: 5085
- 67 Jiang G, Wang S, Zhang J, Yu J, Zhang Z, Ji F. Adv. Synth. Catal. 2019; 361: 1798
- 68 Gu L.-J, Liu J.-Y, Zhang L.-Z, Xiong Y, Wang R. Chin. Chem. Lett. 2014; 25: 90
- 69 Ma Y, You J, Song F. Chem. Eur. J. 2013; 19: 1189
- 70 Jiang TS, Wang GW. Org. Lett. 2013; 15: 788
- 71 Das T, Chakraborty A, Sarkar A. Tetrahedron Lett. 2014; 55: 7198
- 72 Peng J, Liu L, Hu Z, Huang J, Zhu Q. Chem. Commun. 2012; 48: 3772
- 73 Peng J, Zhao J, Hu Z, Liang D, Huang J, Zhu Q. Org. Lett. 2012; 14: 4966
- 74 Tulichala RN. P, Shankar M, Swamy KC. K. J. Org. Chem. 2018; 83: 4375
- 75 Nandi D, Jhou Y.-M, Lee J.-Y, Kuo B.-C, Liu C.-Y, Huang P.-W, Lee HM. J. Org. Chem. 2012; 77: 9384
- 76 Tang RY, Guo XK, Xiang JN, Li JH. J. Org. Chem. 2013; 78: 11163
- 77 For an efficient procedure under Cu catalysis, see: Wu J.-C, Song R.-J, Wang Z.-Q, Huang X.-C, Xie Y.-X, Li J.-H. Angew. Chem. Int. Ed. 2012; 51: 3453
- 78 Li Y, Xue D, Lu W, Fan X, Wang C, Xiao J. RSC Adv. 2013; 3: 11463
- 79 For a review on dehydrogenative Heck reactions, see: Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
- 80 Zhao Y, Sharma UK, Schröder F, Sharma N, Song G, Van der Eycken EV. RSC Adv. 2017; 7: 32559
- 81 Anhydrous t-BuOOH solution (5.5 M in decane over molecular sieves) was used: Sharma, U. K. personal communication, 2018.
- 82 Song H, Chen D, Pi C, Cui X, Wu Y. J. Org. Chem. 2014; 79: 2955
- 83 Bao Y, Wang J.-Y, Zhang Y.-X, Li Y, Wang X.-S. Tetrahedron Lett. 2018; 59: 3147