Subscribe to RSS
DOI: 10.1055/s-0037-1611729
Combining Defects in a Single Nanographene: A Fully Helical Saddle Ribbon
This work was supported by the European Research Council (ERC) under the European Union´s Horizon 2020 research and innovation program (ERC-2015-STG-677023) and the Ministerio de Economía y Competitividad (Spain) (CTQ2015-70283-P, BES-2016-076371, IJCI-2016-27793 and RyC-2013-12943). E.M. thanks the Fundação para a Ciência e a Tecnologia for financial support (UID/NAN/50024/2013 and IF/00759/2013)Publication History
Received: 17 December 2018
Accepted after revision: 22 January 2019
Publication Date:
26 February 2019 (online)
Abstract
The controlled preparation of well-defined distorted nanographenes by a bottom-up approach based on organic synthesis permits the direct establishment of unprecedented structure–property relationships in carbon nanostructures. The simultaneous incorporation of various defects in nanographenes affords highly curved structures with novel or enhanced photophysical properties. In this sense, we recently reported a fully helical and saddle-shaped nanographene ribbon containing the first undecabenzo[7]helicene unit. Both its linear and nonlinear optical properties are enhanced in comparison with those of other partially π-extended [7]helicenes. Moreover, the new superhelicene exhibits the highest emission dissymmetry factor (g lum) reported to date for a homochiral nanographene. The combination of both nonlinear and chiroptical properties in nanographenes opens up new possible future applications for those distorted nanostructures.
1 Introduction
2 Synthesis of Embedded Seven-Membered Rings
3 Combination of Defects: Seven-Membered Rings and π-Extended Helicenes
4 Conclusions and Outlook
-
References
- 1a Wu J, Pisula W, Müllen K. Chem. Rev. 2007; 107: 718
- 1b Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
- 2 Yazyev OV, Chen YP. Nat. Nanotechnol. 2014; 9: 755
- 3a Márquez IR, Castro-Fernández S, Millán A, Campaña AG. Chem. Commun. 2018; 54: 6705
- 3b Pun SH, Miao Q. Acc. Chem. Res. 2018; 51: 1630
- 4a Deng S, Berry V. Mater. Today 2016; 19: 197
- 4b Eftekhari A, Garcia H. Mater. Today Chem. 2017; 4: 1
- 5 Shen Y, Chen C.-F. Chem. Rev. 2012; 112: 1463
- 6 Gingras M, Félix G, Peresutti R. Chem. Soc. Rev. 2013; 42: 1007
- 7a Sánchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S. Chem. Eur. J. 2015; 21: 13488
- 7b Kumar J, Nakashima T, Kawai T. J. Phys. Chem. Lett. 2015; 6: 3445
- 7c Longhi G, Castiglioni E, Koshoubu J, Mazzeo G, Abbate S. Chirality 2016; 28: 696
- 8a Li C, Yang Y, Miao Q. Chem. Asian J. 2018; 13: 884
- 8b Schuster NJ, Hernández Sánchez R, Bukharina D, Kotov NA, Berova N, Ng F, Steigerwald ML, Nuckolls C. J. Am. Chem. Soc. 2018; 140: 6235
- 9a Reger D, Haines P, Heinemann FW, Guldi DM, Jux N. Angew. Chem. Int. Ed. 2018; 57: 5938
- 9b Evans PJ, Ouyang J, Favereau L, Crassous J, Fernández I, Perles J, Martín N. Angew. Chem. Int. Ed. 2018; 57: 6774
- 10a Buchta M, Rybáček J, Jančařík A, Kudale AA, Buděšínský M, Chocholoušová JV, Vacek J, Bednárová L, Císařová I, Bodwell GJ, Starý I, Stará IG. Chem. Eur. J. 2015; 21: 8910
- 10b Hu Y, Wang X.-Y, Peng P.-X, Wang X.-C, Cao X.-Y, Feng X, Müllen K, Narita A. Angew. Chem. Int. Ed. 2017; 56: 3374
- 10c Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. J. Am. Chem. Soc. 2018; 140: 4317
- 10d Zhu Y, Xia Z, Cai Z, Yuan Z, Jiang N, Li T, Wang Y, Guo X, Li Z, Ma S, Zhong D, Li Y, Wang J. J. Am. Chem. Soc. 2018; 140: 4222
- 10e Yamano R, Shibata Y, Tanaka K. Chem. Eur. J. 2018; 24: 6364
- 11a Fujikawa T, Preda DV, Segawa Y, Itami K, Scott LT. Org. Lett. 2016; 18: 3992
- 11b Kato K, Segawa Y, Scott LT, Itami K. Angew. Chem. Int. Ed. 2018; 57: 1337
- 11c Fernández-García JM, Evans PJ, Medina Rivero S, Fernández I, García-Fresnadillo D, Perles J, Casado J, Martín N. J. Am. Chem. Soc. 2018; 140: 17188
- 12a Pradhan A, Dechambenoit P, Bock H, Durola F. J. Org. Chem. 2013; 78: 2266
- 12b Fujikawa T, Segawa Y, Itami K. J. Org. Chem. 2017; 82: 7745
- 12c Cruz CM, Márquez IR, Mariz IF. A, Blanco V, Sánchez-Sánchez C, Sobrado JM, Martín-Gago JA, Cuerva JM, Maçôas E, Campaña AG. Chem. Sci. 2018; 9: 3917
- 13a Luo J, Xu X, Mao R, Miao Q. J. Am. Chem. Soc. 2012; 134: 13796
- 13b Cheung KY, Xu X, Miao Q. J. Am. Chem. Soc. 2015; 137: 3910
- 14 Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
- 15a Mughal EU, Kuck D. Chem. Commun. 2012; 48: 8880
- 15b Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
- 16 Kawai K, Kato K, Peng L, Segawa Y, Scott LT, Itami K. Org. Lett. 2018; 20: 1932
- 17 Pun SH, Chan CK, Luo J, Liu Z, Miao Q. Angew. Chem. Int. Ed. 2018; 57: 1581
- 18a Vollhardt KP. C. Angew. Chem. 1984; 96: 525
- 18b Agenet N, Gandon V, Vollhardt KP. C, Malacria M, Aubert C. J. Am. Chem. Soc. 2007; 129: 8860
- 19 Márquez IR, Fuentes N, Cruz CM, Puente-Muñoz V, Sotorrios L, Marcos ML, Choquesillo-Lazarte D, Biel B, Crovetto L, Gómez-Bengoa E, González MT, Martin R, Cuerva JM, Campaña AG. Chem. Sci. 2017; 8: 1068
- 20 Jiménez VG, Tapia R, Medel MA, Mariz IF. A, Ribeiro T, Blanco V, Cuerva JM, Maçôas E, Campaña AG. Chem. Commun. 2018; 54: 3359
- 21 Cruz CM, Castro-Fernández S, Maçôas E, Cuerva JM, Campaña AG. Angew. Chem. Int. Ed. 2018; 57: 14782
- 22 Santos CI. M, Mariz IF. A, Pinto SN, Gonçalves G, Bdikin I, Marques P, Neves M, Martinho JM. G, Maçôas EM. S. Nanoscale 2018; 10: 12505
- 23a Vander Donckt E, Nasielski J, Greenleaf JR, Birks JB. Chem. Phys. Lett. 1968; 2: 409
- 23b Joly M, Defay N, Martin RH, Declerq JP, Germain G, Soubrier-Payen B, Van Meerssche M. Helv. Chim. Acta 1977; 60: 537
- 23c Nakai Y, Mori T, Inoue Y. J. Phys. Chem. A 2012; 116: 7372
- 24 Ravat P, Hinkelmann R, Steinebrunner D, Prescimone A, Bodoky I, Juríček M. Org. Lett. 2017; 19: 3707
For selected examples, see: