Subscribe to RSS
DOI: 10.1055/s-0038-1634091
Computer-Assisted Analysis of 4D Cardiac MR Image Sequences after Myocardial Infarction
Publication History
Publication Date:
06 February 2018 (online)
Summary
Objectives: Spatial-temporal MR image sequences of the heart contain information about shape and motion changes and pathological structures after myocardial infarction. In this paper a Heart Analysis Tool (HeAT) for the quantitative analysis of 4D MR image sequences of infarct patients is presented.
Methods: HeAT supports interactive segmentation of anatomical and pathological structures. Registration of Cine- and DE-MR image data is applied to enable their combined evaluation during the analysis process. Partitioning of the myocardium in segments enables the analysis with high local resolution. Corresponding segments are generated and used for inter/intra-patient comparison. Quantitative parameters were extracted and visualized.
Results: Parameters like endocard movement in the infarcted area of six infarct patients were computed in HeAT. Parameters in the infarct area show the expected dysfunctional characteristics. Based on theses parameters passive endocardial movement and myocardial areas with decreased contraction could be identified.
Conclusion: In contrast to other software tools HeAT supports the combination of contour information of Cine-MR and DE-MR, local analysis with high resolution and inter/intra patient comparison. HeAT enables an observer-independent evaluation of the complex cardiac image data. Using HeAT in further studies can increase the understanding of left ventricle(LV) remodeling.
-
References
- 1 Stahmer S. et al. Myocardial infarction. http://www.emedicine.com
- 2 Jackson BM, Gorman JHIII, Salgo IS, Moainie SL, Plappert T. St John-Sutton M, Edmunds Jr. LH, Gorman RC. Border zone geometry increases wall stress after myocardial infarction: contrast echocardiographic assessment. Am J Physiol Heart Circ Physiol 2003; 284: 475-9.
- 3 Zimmerman SD, Criscione J, Covell JW. Remodeling in myocardium adjacent to an infarction in the pig left ventricle. Am J Physiol Heart Circ Physiol 2004; 287: H2697-H2704.
- 4 Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM. Transmural extent of acute myocardium infarction predicts long-term improvement in contractile function. Circulation 2001; 104: 1101-7.
- 5 Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Müller V, Mester J, Higgins CB, Adam G, Meinertz T. Acute Myocardial Infarction: Evaluation with First-Pass Enhancement and Delayed Enhancement MR Imaging Compared with 201Tl SPECT Imaging. Radiology 2004; 232: 49-57.
- 6 Wu KC, Zerhouni EA, Judd RM. et al Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998; 97: 765-72.
- 7 U.S. National Institute of Health. NIH Image. http://rsb.info.nih.gov/nih-image/
- 8 Shi P, Robinson G, Duncan J. Myocardial motion and function assessment using 4D images. IEEE Visualization in Biomedical Computing 1994; pp 148-59.
- 9 Buller VGM, van der Geest RJ, Kool MD, van der Wall EE, de Roos A, Reiber JHC. Assessment of regional left ventricular wall parameters from short-axis MR imaging using a 3D extension to the improved centerline method. Invest Radiol 1997; 32 (009) 529-39.
- 10 Paragios N.. Shape-based Segmentation and Tracking in Cardiac Image Analysis. IEEE Transactions on Medical Image Analysis 2003; pp 402-7.
- 11 Pfeifer B, Fischer G, Hanser F, Seger M, Hintermüller C, Modre-Osprian R, Trieb T, Tilg B. Atrial and ventricular myocardium extraction using model-based techniques. Methods Inf Med 2006; 45: 19-26.
- 12 Frangi F. et al. Three-Dimensional Modeling for Functional Analysis of Cardiac Images: A Review. IEEE Transactions on Medical Imaging; p 20.
- 13 Gerber BL, Garot J, Bluemke DA, Wu KC, Lima J. Accuracy of Contrast-Enhanced Magnetic Resonance Imaging in Predicting Improvement of Regional Myocardial Function in Patients after Acute Myocardial Infarction. Circulation 2002; 106: 1083-9.
- 14 Wells WM, Viola P, Kikinis R.. Multimodal volume registration by maximization of mutual information. In: Proc Med Robot Comp Assist Surg. Baltimore 1995; pp 55-62.
- 15 Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G.. Automated multimodality image registration using information theory. In Bizais Y, Barillot C, Di Paola R. (eds.) Proc Information Processing in Medical Imaging. Ile de Berder, France 1995; pp 263-74.
- 16 Thirion JP. Non-rigid matching using demons. Proc Int. Conf Computer Vision and Pattern Recognition (CVPR’96) 1996
- 17 Cerqueira MD, Weissman NJ, Dilsizian V. et al Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. American Heart Association, Inv. 2002
- 18 Sheehan FH, Bolson EL, Dodge HT, Mathey DG, Schofer J, Woo HW. Advantages and applications of the centerline method for characterizing regional ventricular function. Circulation 1986; 74: 293-305.
- 19 Insight Segmentation and Registration Toolkit (ITK). http://www.itk.org
- 20 Yoo T.. Insight into Images - principles and practice for segmentation, registration and image analysis. 2004
- 21 Schroeder W, Lorenson B.. Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics. 1st. Prentice Hall PTR. 1996
- 22 König S, Hesser J. Live-Wires Using Path- Graphs. Methods Inf Med 2004; 43: 371-5.
- 23 RSI. IDL: The Data Visualization & Analysis Platform. http://www.rsinc.com/idl/
- 24 Oppelt A, Graumann R, Barfuss A. et al FISP: a new fast MRI sequence. Electromedica 1986; 54: 15-1852.
- 25 Zur Y, Wood ML, Neuringer LJ. Motion-insensitive, steady-state free precession imaging. Magn Reson Med 1990; 16: 444-59.