Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(17): 3205-3213
DOI: 10.1055/s-0039-1689917
DOI: 10.1055/s-0039-1689917
psp
Practical Chromatography-Free Synthesis of 2-Iodo-N,N-diisopropylferrocenecarboxamide and Further Transformations
This work was supported by the Université de Rennes 1 and CNRS.Further Information
Publication History
Received: 13 April 2019
Accepted after revision: 16 May 2019
Publication Date:
12 June 2019 (online)
Abstract
An efficient procedure able to deliver grams of racemic and enantioenriched 2-iodo-N,N-diisopropylferrocenecarboxamide without chromatographic purification was developed. To introduce the halogen, two procedures, one using the nBuLi-TMEDA chelate and one using a lithium amide in the presence of ZnCl2 as in situ trap were developed. Further functionalization by Suzuki–Miyaura and Ullman-type cross-couplings was investigated to access a variety of ferrocene derivatives.
Key words
ferrocene - carboxamide - large-scale synthesis - deprotometalation - Suzuki–Miyaura cross-coupling - Ullmann-type cross-couplingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1689917.
- Supporting Information
-
References
- 1a Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. Togni A, Hayashi T. VCH; Weinheim: 1995
- 1b Ferrocenes: Ligands, Materials and Biomolecules. Štěpnička P. Wiley; Chichester: 2008
- 1c Chiral Ferrocenes in Asymmetric Catalysis. Dai L.-X, Hou X.-L. Wiley-VCH; Weinheim: 2010
- 1d Jaouen G, Vessieres A, Top S. Chem. Soc. Rev. 2015; 44: 8802
- 1e Scottwell S. Ø, Crowley JD. Chem. Commun. 2016; 52: 2451
- 1f Astruc D. Eur. J. Inorg. Chem. 2017; 6
- 1g Patra M, Gasser G. Nat. Rev. Chem. 2017; 1: 0066
- 2 Schaarschmidt D, Lang H. Organometallics 2013; 32: 5668
- 3a Marquarding D, Klusacek H, Gokel G, Hoffmann P, Ugi I. J. Am. Chem. Soc. 1970; 92: 5389
- 3b Rebière F, Riant O, Ricard L, Kagan HB. Angew. Chem., Int. Ed. Engl. 1993; 32: 568
- 3c Riant O, Samuel O, Kagan HB. J. Am. Chem. Soc. 1993; 115: 5835
- 3d Nishibayashi Y, Uemura S. Synlett 1995; 79
- 3e Richards CJ, Damalidis T, Hibbs DE, Hursthouse MB. Synlett 1995; 74
- 3f Sammakia T, Latham HA, Schaad DR. J. Org. Chem. 1995; 60: 10
- 3g Riant O, Samuel O, Flessner T, Taudien S, Kagan HB. J. Org. Chem. 1997; 62: 6733
- 4 Alba A.-NR, Rios R. Molecules 2009; 14: 4747
- 5a Zhu D.-Y, Chen P, Xia J.-B. ChemCatChem 2016; 8: 68
- 5b Gao D.-W, Gu Q, Zheng C, You S.-L. Acc. Chem. Res. 2017; 50: 351
- 5c Schmiel D, Butenschön H. Organometallics 2017; 36: 4979
- 5d Kong W.-J, Shao Q, Li M.-H, Zhou Z.-L, Xu H, Dai H.-X, Yu J.-Q. Organometallics 2018; 37: 2832
- 6a Aratani T, Gonda T, Nozaki H. Tetrahedron Lett. 1969; 2265
- 6b Aratani T, Gonda T, Nozaki H. Tetrahedron 1970; 26: 5453
- 6c Price D, Simpkins NS. Tetrahedron Lett. 1995; 36: 6135
- 6d Nishibayashi Y, Arikawa Y, Ohe K, Uemura S. J. Org. Chem. 1996; 61: 1172
- 7 Tsukazaki M, Tinkl M, Roglans A, Chapell BJ, Taylor NJ, Snieckus V. J. Am. Chem. Soc. 1996; 118: 685
- 8 Firth JD, Canipa SJ, Ferris L, O’Brien P. Angew. Chem. Int. Ed. 2018; 57: 223
- 9 Genet C, Canipa SJ, O’Brien P, Taylor S. J. Am. Chem. Soc. 2006; 128: 9336
- 10 Touafek O, Kabouche A, Kabouche Z. J. Chem. Res. 2000; 499
- 11 Tezuka N, Shimojo K, Hirano K, Komagawa S, Yoshida K, Wang C, Miyamoto K, Saito T, Takita R, Uchiyama M. J. Am. Chem. Soc. 2016; 138: 9166
- 12 Dayaker G, Tilly D, Chevallier F, Hilmersson G, Gros PC, Mongin F. Eur. J. Org. Chem. 2012; 6051
- 13 Tazi M, Erb W, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V, Mongin F. Organometallics 2017; 36: 4770
- 14 Sanders R, Mueller-Westerhoff UT. J. Organomet. Chem. 1996; 512: 219
- 15 Brikci-Nigassa NM, Bentabed-Ababsa G, Erb W, Mongin F. Synthesis 2018; 50: 3615
- 16 Dearden MJ, Firkin CR, Hermet J.-PR, OʼBrien P. J. Am. Chem. Soc. 2002; 124: 11870
- 17a Schlosser M. Angew. Chem. Int. Ed. 2005; 44: 376
- 17b Schnurch M, Spina M, Khan AF, Mihovilovic MD, Stanetty P. Chem. Soc. Rev. 2007; 36: 1046
- 17c Schnürch M. Recent Progress on the Halogen Dance Reaction on Heterocycles. In Halogenated Heterocycles: Synthesis, Application and Environment. Iskra J. Springer; Berlin: 2012: 185
- 17d Yamane Y, Sunahara K, Okano K, Mori A. Org. Lett. 2018; 20: 1688
- 17e Erb W, Mongin F. Tetrahedron 2016; 72: 4973
- 17f Tazi M, Hedidi M, Erb W, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V, Bentabed-Ababsa G, Mongin F. Organometallics 2018; 37: 2207
- 18 Bhakuni BS, Yadav A, Kumar S, Patel S, Sharma S, Kumar S. J. Org. Chem. 2014; 79: 2944
- 19 Anderson JC, Blake AJ, Arnall-Culliford JC. Org. Biomol. Chem. 2003; 1: 3586
- 20a Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
- 20b Chen W.-B, Xing C.-H, Dong J, Hu Q.-S. Adv. Synth. Catal. 2016; 358: 2072
- 21 Erb W, Hurvois J.-P, Roisnel T, Dorcet V. Organometallics 2018; 37: 3780
- 22 Burchat AF, Chong JM, Nielsen N. J. Organomet. Chem. 1997; 542: 281
- 23 Singh IP, Jain SK, Kaur A, Singh S, Kumar R, Garg P, Sharma SS, Arora SK. Eur. J. Med. Chem. 2010; 45: 3439
- 24 Breit B, Breuninger D. Synthesis 2005; 2782