Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(19): 2198-2202
DOI: 10.1055/s-0039-1690228
DOI: 10.1055/s-0039-1690228
letter
Catalytic Asymmetric Synthesis of Atropisomeric Quinolines through the Friedländer Reaction
We are grateful for financial support from the National Natural Science Foundation of China (NSFC, Grant Nos. 21573161 and 21571144), the Natural Science Foundation of Zhejiang Province (Grant Nos. LY18B020011 and LQ19B020004), and the Foundation of Wenzhou Basic Scientific Research Project (G20180015).Further Information
Publication History
Received: 05 October 2019
Accepted after revision: 13 October 2019
Publication Date:
05 November 2019 (online)
Abstract
A phosphoric acid catalyzed atroposelective Friedländer reaction was developed in which acetylacetone and a variety of 2′-substituted 2-aminobenzophenones were successfully employed to give optically active biaryl quinolines in good yields and with high enantioselectivities.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690228.
- Supporting Information
-
References and Notes
- 1 Christie GH, Kenner J. J. Chem. Soc., Trans. 1922; 121: 614
- 2a Brunel JM. corrigendum: Chem. Rev. 2005; 105: 857; Chem. Ref. 2005, 105, 4233
- 2b Brunel JM. Chem. Rev. 2007; 107: PR1
- 2c Genet J.-P, Ayad T, Ratovelomanana-Vidal V. Chem. Rev. 2014; 114: 2824
- 2d Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R. J. Am. Chem. Soc. 1980; 102: 7932
- 2e Akutagawa S. Appl. Catal., A 1995; 128: 171
- 2f Kumobayashi H, Miura T, Sayo N, Saito T, Zhang X. Synlett 2001; 1055
- 2g Strong JG. PharmaChem 2003; 2: 20
- 3a Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 3b Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
- 4a Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
- 4b LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem 2011; 6: 505
- 4c Zask A, Murphy J, Ellestad GA. Chirality 2013; 25: 265
- 5a Wu Y.-L, Ferroni F, Pieraccini S, Schweizer WB, Frank BB, Spada GP, Diederich F. Org. Biomol. Chem. 2012; 10: 8016
- 5b Zhu Y.-Y, Wu X.-D, Gu S.-X, Pu L. J. Am. Chem. Soc. 2019; 141: 175
- 5c Pu L. Acc. Chem. Res. 2012; 45: 150
- 6a Baudoin O. Eur. J. Org. Chem. 2005; 4223
- 6b Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
- 6c Wallace TW. Org. Biomol. Chem. 2006; 4: 3197
- 6d Tanaka K. Chem. Asian J. 2009; 4: 508
- 6e Bringmann G, Menche D. Acc. Chem. Res. 2001; 34: 615
- 6f Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
- 6g Ma G, Sibi MP. Chem. Eur. J. 2015; 21: 11644
- 6h Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem. Rev. 2015; 115: 11239
- 6i Yang H, Yang X, Tang W. Tetrahedron 2016; 72: 6143
- 6j Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord. Chem. Rev. 2016; 308: 131
- 6k Renzi P. Org. Biomol. Chem. 2017; 15: 4506
- 6l Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
- 6m Link A, Sparr C. Chem. Soc. Rev. 2018; 47: 3804
- 6n Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
- 6o Metrano AJ, Miller SJ. Acc. Chem. Res. 2019; 52: 199
- 7a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
- 7b Yang L, Huang H. Catal. Sci. Technol. 2012; 2: 1099
- 7c Engle KM, Yu J.-Q. J. Org. Chem. 2013; 78: 8927
- 7d Wencel-Delord J, Colobert F. Chem. Eur. J. 2013; 19: 14010
- 7e Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
- 7f Pedroni J, Cramer N. Chem. Commun. 2015; 51: 17647
- 7g Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 7h Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
- 7i Asymmetric Functionalization of C–H Bonds . You S.-L. Royal Society of Chemistry; Cambridge: 2015
- 8 Wang J, Chen M.-W, Ji Y, Hu S.-B, Zhou Y.-G. J. Am. Chem. Soc. 2016; 138: 10413
- 9 Miyaji R, Asano K, Matsubara S. Chem. Eur. J. 2017; 23: 9996
- 10a Link A, Sparr C. Angew. Chem. Int. Ed. 2014; 53: 5458
- 10b Fäseke VC, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 7261
- 10c Zhang L, Zhang J, Ma J, Cheng D.-J, Tan B. J. Am. Chem. Soc. 2017; 139: 1714
- 10d Wang Y.-B, Zheng S.-C, Hu Y.-M, Tan B. Nat. Commun. 2017; 8: 15489
- 10e Zhao C, Guo D, Munkerup K, Huang K.-W, Li F, Wang J. Nat. Commun. 2018; 9: 611
- 10f Liu Y, Wu X, Li S, Xue L, Shan C, Zhao Z, Yan H. Angew. Chem. Int. Ed. 2018; 57: 6491
- 11a Kang G, Luo Z, Liu C, Gao H, Wu Q, Wu H, Jiang J. Org. Lett. 2013; 15: 4738
- 11b Gao H, Luo Z, Ge P, He J, Zhou F, Zheng P, Jiang J. Org. Lett. 2015; 17: 5962
- 11c Wang N, Liu H, Gao H, Zhou J, Zheng L, Li J, Xiao H.-P, Li X, Jiang J. Org. Lett. 2019; 21: 6684
- 12 During the preparation of this manuscript, Cheng et. al. reported a chiral phosphoric acid and achiral amine co-catalyzed Friedländer reaction; see: Shao Y.-D, Dong M.-M, Wang Y.-A, Cheng P.-M, Wang T, Cheng D.-J. Org. Lett. 2019; 21: 4831
- 13a Li L, Seidel D. Org. Lett. 2010; 12: 5064
- 13b Ren L, Lei T, Gong L.-Z. Chem. Commun. 2011; 47: 11683
- 13c Bañón-Caballero A, Guillena G, Nájera C. J. Org. Chem. 2013; 78: 5349
- 14 Gheewala CD, Collins BE, Lambert TH. Science 2016; 351: 961
- 15 Phosphoric-Acid-Catalyzed Asymmetric Friedländer Reaction; General Procedure A Schlenk tube was charged with the appropriate 2-aminobenzophenone 1 (1 equiv, 0.1 mmol), acetylacetone (2; 5 equiv, 0.5 mmol), catalyst Cat.5 (0.1 equiv, 10% mmol), powdered 5 Å MS (50 mg), and anhyd PhCN (0.5 mL). The resulting mixture was stirred at rt for 12 h and then at 120 °С for an additional 8 h. When the reaction was complete, the mixture was purified by flash column chromatography [silica gel, PE–EtOAc (8:1 to 6:1)]. 1-[2-Methyl-5-(3-{2-[4-(trifluoromethyl)phenyl]ethyl}phenyl)quinolin-3-yl]ethanone (4a) Yellow liquid; yield: 39.9 mg (92%; ee 88%); [α]D 27 +5.6 (c 0.01, EtOAc). HPCL [Daicel Chiralpak AD-H, hexane–i-PrOH (98:2), flow rate: 0.7 mL/min, λ = 254 nm, 25°С]: t R (major) = 11.40 min; t R (minor) = 12.42 min. 1H NMR (500 MHz, CDCl3): δ = 8.09 (d, J = 8.4 Hz, 1 H), 7.76–7.68 (m, 1 H), 7.46 (t, J = 7.3 Hz, 1 H), 7.42–7.32 (m, 5 H), 7.25 (d, J = 9.4 Hz, 1 H), 7.19 (d, J = 7.4 Hz, 1 H), 6.89 (d, J = 8.0 Hz, 2 H), 2.81–2.60 (m, 2 H), 2.71 (s, 3 H), 2.66–2.60 (m, 1 H), 2.56–2.49 (m, 1 H), 2.08 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 205.01, 153.54, 147.37, 145.26, 143.11, 139.86, 135.16, 134.42, 130.22, 130.08, 129.38, 129.28, 128.93, 128.53, 126.62, 126.23, 125.98, 125.46, 125.20, 125.17, 125.14, 125.11, 36.10, 34.64, 31.90, 23.85. HRMS (Bruker micrOTOF-QII): m/z [M + H]+ calcd for C27H23F3NO: 434.1726; found: 434.1743.1-[2,7-Dimethyl-5-(3-{2-[4-(trifluoromethyl)phenyl]ethyl}phenyl)quinolin-3-yl]ethanone (4b) Yellow liquid; yield: 38.9 mg (87%; ee 93%); [α]D 27 +16.4 (c 0.01, EtOAc); HPLC [Daicel Chiralpak AD-H, hexane–i-PrOH (98:2), flow rate 0.7 mL/min, λ = 254 nm, 25 °С]: t R (major) = 9.18 min, t R (minor) = 11.06 min. 1H NMR (500 MHz, CDCl3): δ = 7.86 (s, 1 H), 7.45 (t, J = 7.5 Hz, 1 H), 7.40 (d, J = 7.4 Hz, 1 H), 7.35–7.31 (m, 3 H), 7.18 (t, J = 7.6 Hz, 2 H), 7.12 (d, J = 8.5 Hz, 1 H), 6.89 (d, J = 8.0 Hz, 2 H), 2.81–2.71 (m, 2 H), 2.69 (s, 3 H), 2.66–2.60 (m, 1 H), 2.58–2.51 (m, 1 H), 2.54 (s, 3 H), 2.07 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 205.21, 153.48, 147.61, 145.30, 142.95, 140.73, 139.81, 134.64, 134.42, 130.06, 129.38, 129.19, 128.84, 128.56, 127.98, 126.19, 125.66, 125.17, 125.14, 125.11, 125.08, 123.42, 36.13, 34.62, 31.96, 23.85, 21.71. HRMS (Bruker micrOTOF-QII): m/z [M + H]+ calcd for C28H25F3NO: 448.1883; found: 448.1879.
- 16 CCDC 1957624 contains the supplementary crystallographic data for compound (S,R)-5. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For review, see:
For selected works, see:
For a review, see:
For recent reviews on the synthesis of axially chiral biaryls, see:
For reviews on asymmetric C–H functionalization, see:
For a book, see:
For some representative work on the construction of axial chirality involving organocatalytic annulation, see: