RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2020; 31(07): 723-729
DOI: 10.1055/s-0039-1691577
DOI: 10.1055/s-0039-1691577
letter
Synthesis of Fully Substituted Pyrroles through a Copper-Catalyzed Aza-Michael/Claisen Rearrangement/Cyclization Cascade
We are grateful for the support provided for this study by the National Natural Science Foundation of China (21502013, 21871035).Weitere Informationen
Publikationsverlauf
Received: 12. November 2019
Accepted after revision: 23. Dezember 2019
Publikationsdatum:
29. Januar 2020 (online)

Abstract
We have developed a copper-catalyzed aza-Michael/Claisen rearrangement/cyclization cascade sequence that affords structurally diverse pentasubstituted pyrroles in acceptable to good yields (31–84%).
Key words
copper catalysis - Claisen rearrangement - aza-Michael reaction - pyrroles - propargylic amines - allenoatesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691577.
- Supporting Information
-
References and Notes
- 1a LoVerme J, Duranti A, Tontini A, Spadoni G, Mor M, Rivara S, Stella N, Xu C, Tarzia G, Piomelli D. Bioorg. Med. Chem. Lett. 2009; 19: 639
- 1b Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264 ; corrigendum: Chem. Rev. 2010, 110, 3850
- 1c Baunbæk D, Trinkler N, Ferandin Y, Lozach O, Ploypradith P, Rucirawat S, Ishibashi F, Iwao M, Meijer L. Mar. Drugs. 2008; 6: 514
- 1d Zhou H, Aguilar A, Chen J, Bai L, Liu L, Meagher JL, Yang C.-Y, McEachern D, Cong X, Stuckey JA, Wang S. J. Med. Chem. 2012; 55: 6149
- 1e Roth BD. US 4681893, 1987
- 1f Roth BD. US 5273995, 1993
- 2a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 2b Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
- 2c Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
- 2d Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
- 3a Liu X.-t, Huang L, Zheng F.-j, Zhan Z.-p. Adv. Synth. Catal. 2008; 350: 2778
- 3b Cadierno V, Gimeno J, Nebra N. Chem. Eur. J. 2007; 13: 9973
- 3c Narboni N, El Kaim L. Eur. J. Org. Chem. 2017; 4242
- 3d Dhawan R, Arndtsen BA. J. Am. Chem. Soc. 2004; 126: 468
- 3e Kayser LV, Vollmer M, Welnhofer M, Krikcziokat H, Meerholz K, Arndtsen BA. J. Am. Chem. Soc. 2016; 138: 10516
- 3f Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674
- 3g Attanasi OA, Favi G, Mantellini F, Moscatelli G, Santeusanio S. J. Org. Chem. 2011; 76: 2860
- 3h Dhara D, Gayen KS, Khamarui S, Pandit P, Ghosh S, Maiti DK. J. Org. Chem. 2012; 77: 10441
- 3i Liu W, Jiang H, Huang L. Org. Lett. 2010; 12: 312
- 3j Wang X, Xu X.-P, Wang S.-Y, Zhou W, Ji S.-J. Org. Lett. 2013; 15: 4246
- 3k Gujarathi S, Liu X, Song L, Hendrickson H, Zheng G. Tetrahedron 2014; 70: 5267
- 4a Lu Y, Arndtsen BA. Angew. Chem. Int. Ed. 2008; 47: 5430
- 4b Zou Y.-Q, Lu L.-Q, Fu L, Chang N.-J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2011; 50: 7171
- 4c Huang L, Zhao J. Chem. Commun. 2013; 49: 3751
- 4d Yu C, Zhang Y, Zhang S, Li H, Wang W. Chem. Commun. 2011; 47: 1036
- 4e Li Y.-J, Huang H.-M, Dong H.-Q, Jia J.-H, Han L, Ye Q, Gao J.-R. J. Org. Chem. 2013; 78: 9424
- 4f Huang H.-M, Li Y.-J, Ye Q, Yu W.-B, Han L, Jia J.-H, Gao J.-R. J. Org. Chem. 2014; 79: 1084
- 4g Fujiya A, Tanaka M, Yamaguchi E, Tada N, Itoh A. J. Org. Chem. 2016; 81: 7262
- 5a Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
- 5b Zhang S, Ma Y, Lan J, Song F, You J. Org. Biomol. Chem. 2015; 13: 5867
- 6 Yan R.-L, Luo J, Wang C.-X, Ma C.-W, Huang G.-S, Liang Y.-M. J. Org. Chem. 2010; 75: 5395
- 7 Saito A, Konishi T, Hanzawa Y. Org. Lett. 2010; 12: 372
- 8a Wang Y, Bi X, Li D, Liao P, Wang Y, Yang J, Zhang Q, Liu Q. Chem. Commun. 2011; 47: 809
- 8b Sun B, Ma Q, Wang Y, Zhao Y, Liao P, Bi X. Eur. J. Org. Chem. 2014; 7552
- 9a Tan WW, Yoshikai N. Chem. Sci. 2015; 6: 6448
- 9b Guan Z.-H, Li L, Ren Z.-H, Li J, Zhao M.-N. Green Chem. 2011; 13: 1664
- 9c Bisht S, Peddinti RK. J. Org. Chem. 2017; 82: 13617
- 9d Yoshida M, Sugimura C. Tetrahedron Lett. 2013; 54: 2082
- 10 Zhang X.-Y, Yang Z.-W, Chen Z, Wang J, Yang D.-L, Shen Z, Hu L.-L, Xie J.-W, Zhang J, Cui H.-L. J. Org. Chem. 2016; 81: 1778
- 11a Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
- 11b Zhu G, Chen Z, Jiang Q, Xiao D, Cao P, Zhang X. J. Am. Chem. Soc. 1997; 119: 3836
- 11c Lu X, Lu Z, Zhang X. Tetrahedron 2006; 62: 457
- 12a Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 12b Krause N, Winter C. Chem. Rev. 2011; 111: 1994
- 12c Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
- 13a Liao J.-Y, Shao P.-L, Zhao Y. J. Am. Chem. Soc. 2015; 137: 628
- 13b Kok GP. Y, Shao P.-L, Liao J.-Y, Ismail SN. F. B. S, Yao W, Lu Y, Zhao Y. Chem. Eur. J. 2018; 24: 10513
- 14 Lu K, Ding F, Qin L, Jia X, Xu C, Zhao X, Yao Q, Yu P. Chem. Asian. J. 2016; 11: 2121
- 15 Wang Y, Jiang C.-M, Li H.-L, He F.-S, Luo X, Deng W.-P. J. Org. Chem. 2016; 81: 8653
- 16 For a two-step synthesis of pyrrole using an allenoate as a starting material, see: Grigg R, Savic V. Chem. Commun. 2000; 873
- 17 Liu C, Wang G, Wang Y, Pereshivko OP, Peshkov VA. Eur. J. Org. Chem. 2019; 1981
- 18a Cui H.-L, Liu S, Jiang L. Eur. J. Org. Chem. 2019; 4941
- 18b Yuan C, Tan H, Jiang X.-F, Liu S, Jiang L, Cao Q.-Y, Xu X.-J, Deng X.-Y, Pan G.-N, Chen J.-Y, Cui H.-L. Asian J. Org. Chem. 2019; 8: 1893
- 19a Cui H.-L, Jiang L, Tan H, Liu S. Adv. Synth. Catal. 2019; 361: 4772
- 19b Cui H.-L, Shi Y, Deng H.-Q, Lei J.-J, Xu X.-J, Tian X, Qiao J, Zhou L. Synlett 2019; 30: 167
- 19c Liu S.-W, Gao Y.-J, Shi Y, Zhou L, Tang X, Cui H.-L. J. Org. Chem. 2018; 83: 13754
- 19d Tang X, Yang M.-C, Ye C, Liu L, Zhou H.-L, Jiang X.-J, You X.-L, Han B, Cui H.-L. Org. Chem. Front. 2017; 4: 2128
- 20 CCDC 1954351 contains the supplementary crystallographic data for compound 3n. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 21 Weng J, Chen Y, Yue B, Xu M, Jin H. Eur. J. Org. Chem. 2015; 3164
- 22 Binder JT, Kirsch SF. Org. Lett. 2006; 8: 2151
- 23 Lambert TH, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 13646
- 24 Pentasubstituted Pyrroles 3a–p; General ProcedureAllenoate 2 (0.4 mmol, 2.0 equiv) was added to a mixture of the appropriate propargylic amine 1 (0.2 mmol, 1.0 equiv) and Cu2O (20 mol%) in DCE (2.0 mL), and the mixture was stirred at 50 °C for the time shown in Scheme 2, without exclusion of air. The mixture was then directly purified by flash chromatography (silica gel, hexane–EtOAc).Ethyl 1,5-dibenzyl-4-phenyl-2-(2-phenylethyl)-1H-pyrrole-3-carboxylate (3a)Purified by a flash chromatography [silica gel, hexane–EtOAc (50:1)] as a yellow oil; yield: 382.6 mg (77%). 1H NMR (400 MHz, CDCl3): δ = 7.36–7.11 (m, 14 H), 7.07 (dd, J = 6.8, 1.8 Hz, 2 H), 7.01–6.94 (m, 2 H), 6.81 (dd, J = 6.7, 1.9 Hz, 2 H), 4.54 (s, 2 H), 4.13 (q, J = 7.1 Hz, 2 H), 3.72 (s, 2 H), 3.15 (dd, J = 8.7, 6.6 Hz, 2 H), 2.82 (dd, J = 8.6, 6.6 Hz, 2 H), 1.05 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 165.6, 141.5, 139.6, 139.5, 137.5, 136.5, 130.5, 128.8, 128.6, 128.5, 128.4, 128.1, 127.8, 127.4, 127.4, 126.2, 126.1, 126.0, 125.5, 125.2, 110.9, 59.2, 46.9, 36.4, 30.3, 28.2, 13.9. ESI-HRMS: m/z [M + H]+ calcd for C35H34NO2: 500.2584; found: 500.2589.Ethyl 5-Benzyl-1-(4-methoxybenzyl)-4-phenyl-2-(2-phenylethyl)-1H-pyrrole-3-carboxylate (3b)Purified by a flash chromatography [silica gel, hexane–EtOAc (25:1)] as a pale-yellow foam solid; yield: 373.5 mg (71%). 1H NMR (400 MHz, CDCl3): δ = 7.30–7.05 (m, 11 H), 7.04–6.97 (m, 2 H), 6.95–6.88 (m, 2 H), 6.79–6.72 (m, 2 H), 6.67 (d, J = 8.5 Hz, 2 H), 4.43 (s, 2 H), 4.06 (q, J = 7.1 Hz, 2 H), 3.72 (s, 3 H), 3.66 (s, 2 H), 3.10 (dd, J = 8.8, 6.6 Hz, 2 H), 2.76 (dd, J = 8.7, 6.6 Hz, 2 H), 0.98 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 165.6, 158.9, 141.5, 139.5, 139.5, 136.5, 130.5, 129.4, 128.5, 128.4, 128.4, 128.0, 127.8, 127.4, 126.7, 126.2, 126.0, 125.2, 114.4, 114.3, 110.8, 59.2, 55.3, 46.4, 36.4, 30.3, 28.2, 14.0. ESI-HRMS: m/z [M + H]+ calcd for C36H36NO3: 530.2690; found: 530.2690.
For reviews on the synthesis of polysubstituted pyrroles, see:
For reviews on the synthesis of heterocycles using allenoates, see:
For our recent efforts on the synthesis of N-containing heterocycles, see: