Synlett 2020; 31(09): 861-865
DOI: 10.1055/s-0039-1691598
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 3-Oxoisoindoline-1-carboxamides through Sequential Four-Component Ugi Reaction/Oxidative Nucleophilic Substitution of Hydrogen

Kamran Amiri
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   Email: balalaie@kntu.ac.ir
,
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   Email: balalaie@kntu.ac.ir
b   Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
,
Muhammad U. Anwar
c   Natural and Medical Sciences Research Center University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
,
Ahmed Al-Harrasi
c   Natural and Medical Sciences Research Center University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
› Author Affiliations
National Institute for Medical Research Development (NIMAD Grant No. 982736).
Further Information

Publication History

Received: 13 January 2020

Accepted after revision: 25 January 2020

Publication Date:
13 February 2020 (online)


Abstract

This paper describes a diversity-oriented approach to the formation of 3-oxoisoindoline-1-carboxamide derivatives utilizing the potential of the nitro group as a directing group. The reaction proceeds through a novel class of post-transformation reactions through a sequential four-component Ugi reaction/oxidative nucleophilic substitution of hydrogen. The 3-oxoisoindoline-1-carboxamide derivatives were synthesized in the presence of a base under mild reaction conditions with high regio- and chemoselectivity. The aerobic oxidation, high bond-forming efficiency, high atom economy, and good to excellent yields are the main advantages of this approach.

Supporting Information

 
  • References and Notes

  • 7 Rege PD, Johnson F. J. Org. Chem. 2003; 68: 6133
  • 8 Kraus GA, Selvakumar N. J. Org. Chem. 1998; 63: 9846
  • 9 Mąkosza M, Staliński K. Synthesis 1998; 1631
  • 10 Mąkosza M, Kamieńska-Trela K, Paszewski M, Bechcicka M. Tetrahedron 2005; 61: 11952
    • 13a Sorbera LA, Leeson PA, Silvestre J, Castaner J. Drugs Future 2001; 26: 651
    • 13b Stuk TL, Assink BK, Bates RC, Erdman DT. Jr, Fedij V, Jennings SM, Lassig JA, Smith RJ, Smith TL. Org. Process Res. Dev. 2003; 7: 851
    • 13c Bourzat JD, Capet M, Cotrel C, Labaudiniere R, Pitchen P, Roussel G. US 4960779
  • 14 Björe A, Boström J, Davidsson O, Emtenäs H, Gran U, Iliefski T, Kajanus J, Olsson R, Sandberg L, Strandlund G, Sundell J, Yuan Z.-Q. 2008
  • 16 3-Oxoisoindoline-1-carboxamides 6ak: General ProcedureA 25 mL one-necked flask containing a magnetic stirrer bar was charged with the appropriate primary amine (1.0 mmol) and arylcarboxaldehyde (1.0 mmol) in MeOH (2.0 mL) at rt, and the mixture was stirred for 20 min. 3-Nitrobenzoic acid (4) (1.0 mmol) was then added and stirring was continued for 20 min. The appropriate isocyanide (1.0 mmol) was then added and the mixture was stirred for another 24 hours at rt. When the reaction was complete (TLC), the solvent was removed under vacuum and, without any purification, dry toluene was added to the residue. Cs2CO3 (2.0 mmol) was then added, and the mixture was stirred at rt until the reaction was complete. H2O (5 mL) was added and the aqueous phase was extracted with Et2O (3 × 10 mL). The organic phase was separated and washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo. Further purification was performed by column chromatography (silica gel). N-[1-(3-Bromophenyl)-2-(cyclohexylamino)-2-oxoethyl]-3-nitro-N-phenylbenzamide (5a)White solid; yield: 236 mg (88%); mp 231 °C. IR (KBr): 1351 and 1531 (NO2), 1649 (C=O) cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.19 (s, 1 H, H-Ar), 8.06 (d, J = 7.3 Hz, 1 H, H-Ar), 7.65 (d, J = 7.7 Hz, 1 H, H-Ar), 7.45 (s, 1 H, H-Ar), 7.41 (d, J = 7.9 Hz, 1 H, H-Ar), 7.33 (t, J = 8.0 Hz, 1 H, H-Ar), 7.18 (d, J = 7.7 Hz, 1 H, H-Ar), 7.11 (s, 1 H, H-Ar), 7.10–6.93 (m, 5 H, H-Ar), 6.17 [s, 1 H, −C(sp3)−H], 5.76 (d, J = 8.1 Hz, 1 H, NH), 3.92–3.86 (m, 1 H, H-Cy), 2.02–1.99 (m, 1 H, H-Cy), 1.95–1.89 (m, 1 H, H-Cy), 1.74–1.66 (m, 2 H, H-Cy), 1.63–1.60 (m, 1 H, H-Cy), 1.40–1.33 (m, 2 H, H-Cy), 1.23–1.07 (m, 3 H, H-Cy). 13C NMR (151 MHz, CDCl3): δ = 168.7, 167.6, 147.4, 139.9, 137.5, 136.4, 134.3, 133.4, 131.9, 130.5, 130.1, 128.9, 128.9, 128.8, 128.1, 124.3, 123.7, 122.5, 65.8, 49.1, 32.8, 25.4, 24.8, 24.7. HRMS-ESI: m/z [M + H]+ calcd for C27H27 79BrN3O4: 536.1554; found: 536.1559.1-(3-Bromophenyl)-N-cyclohexyl-5-nitro-3-oxo-2-phenylisoindoline-1-carboxamide (6a)Pale-yellow solid; yield: 248 mg (93%); mp 277 °C. IR (KBr): 1350 and 1524 (NO2), 1651 (C=O) cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.75 (s, 1 H, H-Ar), 8.46 (d, J = 8.6 Hz, 1 H, H-Ar), 7.80 (d, J = 8.4 Hz, 1 H, H-Ar), 7.40 (d, J = 7.7 Hz, 1 H, H-Ar), 7.36 (s, 1 H, H-Ar), 7.31–7.27 (m, 2 H, H-Ar), 7.23 (t, J = 7.3 Hz, 1 H, H-Ar), 7.17 (d, J = 8.1 Hz, 2 H, H-Ar), 7.08 (t, J = 7.7 Hz, 1 H, H-Ar), 7.06 (t, J = 7.7 Hz, 1 H, H-Ar), 6.20 (d, J = 8.1 Hz, 1 H, NH), 3.78–3.71 (m, 1 H, H-Cy), 1.88–1.83 (m, 1 H, H-Cy), 1.64–1.57 (m, 3 H, H-Cy), 1.34–1.23 (m, 3 H, H-Cy), 1.10–0.99 (m, 2 H, H-Cy), 0.90–0.84 (m, 1 H, H-Cy). 13C NMR (151 MHz, CDCl3): δ = 166.6, 165.8, 151.6, 149.2, 138.4, 135.7, 132.2, 131.5, 131.3, 130.1, 129.4, 128.2, 127.6, 127.1, 125.5, 125.4, 122.8, 119.9, 77.0, 49.4, 32.5, 32.2, 25.1, 24.5, 24.4. HRMS-ESI: m/z [M + H]+ calcd for C27H25 79BrN3O4: 534.1165; found: 534.1173.2-Buta-2,3-dien-1-yl-N-cyclohexyl-5-nitro-1-(3-nitrophenyl)-3-oxoisoindoline-1-carboxamide (8a)Pale-yellow solid; yield: 212 mg (89%); mp 285 °C. IR (KBr): 1345 and 1533 (NO2), 1953 (C=C=C), 1656 (C=O) cm–1.1H NMR (600 MHz, CDCl3): δ = 8.63 (s, 1 H, H-Ar), 8.50 (d, J = 8.4 Hz, 1 H, H-Ar), 8.26 (d, J = 9.0 Hz, 1 H, H-Ar), 8.05 (s, 1 H, H-Ar), 7.85 (d, J = 8.4 Hz, 1 H, H-Ar), 7.56 (t, J = 8.1 Hz, 1 H, H-Ar), 7.38 (d, J = 7.9 Hz, 1 H, H-Ar), 6.56 (d, J = 8.0 Hz, 1 H, –NH), 5.14 (p, J = 6.7 Hz, 1 H, allenic H), 4.76–4.72 (m, 1 H, allenic H), 4.66–4.62 (m, 1 H, allenic H), 4.13–4.08 (m, 1 H, –CH2-N), 3.89–4.80 (m, 2 H, –CH2-N and H-Cy), 2.12–2.05 (m, 1 H, H-Cy), 1.83–1.77 (m, 1 H, H-Cy), 1.76–1.61 (m, 3 H, H-Cy), 1.46–1.39 (m, 1 H, H-Cy), 1.35–1.24 (m, 2 H, H-Cy), 1.18–1.10 (m, 1 H, H-Cy), 1.04–0.97 (m, 1 H, H-Cy). 13C NMR (151 MHz, CDCl3): δ = 208.8, 167.2, 165.7, 151.0, 149.4, 148.4, 138.2, 134.5, 131.7, 129.9, 128.2, 125.5, 124.1, 124.0, 119.3, 85.6, 77.5, 75.3, 49.7, 41.3, 32.9, 32.4, 25.2, 24.8, 24.7. HRMS-ESI: m/z [M + H]+ calcd for C25H25N4O6: 477.1680; found: 477.1686.Crystallographic data for 6a and 6b were collected by using APEX-II software, integrated by using SAINT, and corrected for absorption by using a multiscan approach (SADABS). Final cell constants were determined from full least-squares refinement of all observed reflections. The structure was solved by using intrinsic phasing (SHELXT). All non-H atoms were located in subsequent difference maps and refined anisotropically with SHELXL-2014/7.19 H atoms were added at calculated positions and refined with a riding model.
  • 17 CCDC 1968041 and 1968042 contains the supplementary crystallographic data for compounds 6a an 6b, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 18 Amiri K, Khosravi H, Balalaie S, Golmohammadi F, Anwar MU, Al-Harrasi A. Org. Biomol. Chem. 2019; 17: 8858