Subscribe to RSS
DOI: 10.1055/s-0040-1707815
Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization
Financial support by the Deutscher Akademischer Austauschdienst (DAAD) (German Academic Exchange Service) (Leadership for Syria Program) is gratefully acknowledged.Publication History
Received: 14 February 2020
Accepted after revision: 28 April 2020
Publication Date:
19 May 2020 (online)
Abstract
Reactions that form C–C bonds are at the heart of many important transformations, both in industry and in academia. From the myriad of catalytic approaches to achieve such transformations, those relying on C–H functionalization are gaining increasing interest due to their inherent sustainable nature. In this short review, we showcase the most recent advances in the field of C–C bond formation via C–H functionalization, but focusing only on those methodologies relying on copper catalysts. This coinage metal has gained increased popularity in recent years, not only because it is cheaper and more abundant than precious metals, but also thanks to its rich and versatile chemistry.
1 Introduction
2 Cross-Dehydrogenative Coupling under Thermal Conditions
2.1 C(sp3)–C(sp3) Bond Formation
2.2 C(sp3)–C(sp2) Bond Formation
2.3 C(sp2)–C(sp2) Bond Formation
2.4 C(sp3)–C(sp) Bond Formation
3 Cross-Dehydrogenative Coupling under Photochemical Conditions
3.1 C(sp3)–C(sp3) Bond Formation
3.2 C(sp3)–C(sp2) and C(sp3)–C(sp) Bond Formation
4 Conclusion and Perspective
-
References
- 1 Roudesly F, Oble J, Poli G. J. Mol. Catal. A: Chem. 2017; 426: 275
- 2 Beller M. Chem. Rev. 2019; 119: 2089
- 3 Gandeepan P, Muller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 4 Greenwood NN, Earnshaw A. Chemistry of the Elements, 2nd ed. Butterworth-Heinemann; Oxford: 1997. Chap. 28, 1173-1200
- 5 Egorova KS, Ananikov VP. Angew. Chem. Int. Ed. 2016; 55: 12150
- 6 Chen Z.-w, Datta S, DuBois JL, Klinman JP, Mathews FS. Biochemistry 2010; 49: 7393
- 7 Kopp DA, Lippard SJ. Curr. Opin. Chem. Biol. 2002; 6: 568
- 8 Lee JY, Karlin KD. Curr. Opin. Chem. Biol. 2015; 25: 184
- 9 Himes RA, Karlin KD. Curr. Opin. Chem. Biol. 2009; 13: 119
- 10 Que LJr, Tolman WB. Nature 2008; 455: 333
- 11 Trammell R, Rajabimoghadam K, Garcia-Bosch I. Chem. Rev. 2019; 119: 2954
- 12 Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
- 13 Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 14 Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 15 Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 16 Xing Y, Wang N.-X, Zhang W. Synlett 2015; 26: 2088
- 17 Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 18 Tebben L, Studer A. Angew. Chem. 2011; 123: 5138
- 19 Yang X.-L, Peng X.-X, Chen F, Han B. Org. Lett. 2016; 18: 2070
- 20 Richter H, García Mancheño O. Eur. J. Org. Chem. 2010; 4460
- 21 Niu B, Zhao W, Ding Y, Bian Z, Pittman CU, Zhou A, Ge H. J. Org. Chem. 2015; 80: 7251
- 22 Perego C, Millini R. Chem. Soc. Rev. 2013; 42: 3956
- 23 Zhang H, Gu Z, Xu P, Hu H, Cheng Y, Zhu C. Chem. Commun. 2016; 52: 477
- 24 Luo Z, Fang Y, Zhao Y, Liu P, Xu X, Feng C, Li Z, He J. RSC Adv. 2016; 6: 5436
- 25 Huang X.-F, Salman M, Huang Z.-Z. Chem. Eur. J. 2014; 20: 6618
- 26 Gini A, Brandhofer T, Mancheño OG. Org. Biomol. Chem. 2017; 15: 1294
- 27 Basle O. In From C-H to C-C Bonds: Cross-Dehydrogenative-Coupling . Li C.-J. Royal Society of Chemistry; Cambridge: 2015. Chap. 9, 197-218
- 28 Tsang AS. K, Park SJ, Todd MH. In From C-H to C-C Bonds, Cross-Dehydrogenative-Coupling . Li C.-J. Royal Society of Chemistry; Cambridge: 2015. Chap. 11 254-294
- 29 Zheng X, Li Z. In From C-H to C-C Bonds: Cross-Dehydrogenative-Coupling . Li C.-J. Royal Society of Chemistry; Cambridge: 2015. Chap. 3, 55-66
- 30 Almasalma AA, Mejía E. In Heterocycles via Cross Dehydrogenative Coupling: Synthesis and Functionalization . Srivastava A, Jana CK. Springer Nature Singapore; Singapore: 2019: 329-356
- 31 Huang C.-Y, Kang H, Li J, Li C.-J. J. Org. Chem. 2019; 84: 12705
- 32 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
- 33 Xue XS, Ji P, Zhou B, Cheng JP. Chem. Rev. 2017; 117: 8622
- 34 Huang Y.-L, Bao W.-H, Ying W.-W, Chen W.-T, Gao L.-H, Wang X.-Y, Chen G.-P, Ge G.-P, Wei W.-T. Synlett 2018; 29: 1485
- 35 Lee A, Betori RC, Crane EA, Scheidt KA. J. Am. Chem. Soc. 2018; 140: 6212
- 36 Ye L, Gu Q.-S, Tian Y, Meng X, Chen G.-C, Liu X.-Y. Nat. Commun. 2018; 9: 227
- 37 Su R, Li Y, Min M.-Y, Ouyang X.-H, Song R.-J, Li J.-H. Chem. Commun. 2018; 54: 13511
- 38 Tan Q, Yang Z, Jiang D, Cheng Y, Yang J, Xi S, Zhang M. Angew. Chem. Int. Ed. 2019; 58: 6420
- 39 Yan Z, Wang N.-X, Gao X.-W, Li J.-L, Wu Y.-H, Zhang T, Chen S.-L, Xing Y. Adv. Synth. Catal. 2019; 361: 1007
- 40 Ma D, Pan J, Yin L, Xu P, Gao Y, Yin Y, Zhao Y. Org. Lett. 2018; 20: 3455
- 41 Zhu Z.-Q, Xiao L.-J, Chen Y, Xie Z.-B, Zhu H.-B, Le Z.-G. Synthesis 2018; 50: 2775
- 42 Sarkar R, Mukhopadhyay C. Tetrahedron Lett. 2018; 59: 3069
- 43 Yu C, Patureau FW. Angew. Chem. Int. Ed. 2018; 57: 11807
- 44 Borpatra PJ, Deb ML, Baruah PK. Synlett 2018; 29: 1171
- 45 Tang Z, Liu Z, Tong Z, Xu Z, Au C.-T, Qiu R, Kambe N. Org. Lett. 2019; 21: 5152
- 46 Ding R, Lu W.-G, Ci H, Mao Y.-Y, Liu L. ChemistrySelect 2019; 4: 6954
- 47 Lu W, Zhou L. Oxidation of C-H Bonds . John Wiley & Sons; Hoboken: 2017. Chap. 7, 171-207
- 48 Pang X, Wu M, Ni J, Zhang F, Lan J, Chen B, Yan R. J. Org. Chem. 2017; 82: 10110
- 49 Pandit RP, Shim J.-J, Kim SH, Lee YR. RSC Adv. 2017; 7: 55288
- 50 Yang Q, Yin Z, Zheng L, Yuan J, Wei S, Ding Q, Peng Y. RSC Adv. 2019; 9: 5870
- 51 Tripathi KN, Ray D, Singh RP. Eur. J. Org. Chem. 2017; 5809
- 52 Jiang W, Wang Y, Niu P, Quan Z, Su Y, Huo C. Org. Lett. 2018; 20: 4649
- 53 Yang F, Li Y, Floreancig PE, Li X, Liu L. Org. Biomol. Chem. 2018; 16: 5144
- 54 Almasalma AA, Mejia E. Chem. Eur. J. 2018; 24: 12269
- 55 Gupta S, Dubey P, Singh AK, Jain N. Dalton Trans. 2019; 48: 10129
- 56 Schultz DM, Yoon TP. Science 2014; 343: 985
- 57 Marzo L, Pagire SK, Reiser O, Koenig B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 58 Chen B, Wu LZ, Tung CH. Acc. Chem. Res. 2018; 51: 2512
- 59 Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: aav9713
- 60 Paria S, Reiser O. ChemCatChem 2014; 6: 2477
- 61 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 62 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 63 Ghosh I, Marzo L, Das A, Shaikh R, Konig B. Acc. Chem. Res. 2016; 49: 1566
- 64 Cuthbertson JD, MacMillan DW. C. Nature 2015; 519: 74
- 65 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 66 Wang B, Shelar DP, Han X.-Z, Li T.-T, Guan X, Lu W, Liu K, Chen Y, Fu W.-F, Che C.-M. Chem. Eur. J. 2015; 21: 1184
- 67 Nicholls TP, Constable GE, Robertson JC, Gardiner MG, Bissember AC. ACS Catal. 2016; 6: 451
- 68 Zhu Z.-Q, Xiao L.-J, Zhou C.-C, Song H.-L, Xie Z.-B, Le Z.-G. Tetrahedron Lett. 2018; 59: 3326
- 69 Kumar G, Verma S, Ansari A, Khan N.-uH, Kureshy RI. Catal. Commun. 2017; 99: 94
- 70 Sagadevan A, Pampana VK. K, Hwang KC. Angew. Chem. Int. Ed. 2019; 58: 3838
- 71 Almasalma AA, Mejía E. Synthesis 2020; 52: 529
- 72 Dallinger D, Kappe CO. Curr. Opin. Green Sustainable Chem. 2017; 7: 6
- 73 Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
- 74 Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T. React. Chem. Eng. 2017; 2: 258
- 75 Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 76 Gemoets HP. L, Su Y, Shang M, Hessel V, Luque R, Noël T. Chem. Soc. Rev. 2016; 45: 83
- 77 Gruenewald M, Heck J. Chem.-Ing.-Tech. 2015; 87: 1185
- 78 Hone CA, Kappe CO. Top. Curr. Chem. 2018; 377: 2
- 79 Hessel V, Löb P, Löwe H. In Microreactors in Organic Synthesis and Catalysis . Wirth T. Wiley-VCH; Weinheim: 2008. Chap. 5, 211-275