Synlett 2020; 31(10): 953-958
DOI: 10.1055/s-0040-1708004
letter
© Georg Thieme Verlag Stuttgart · New York

Mild, Efficient, and Highly Regioselective Synthesis of 2,6-Diiodobenzaldehyde Derivatives

Raed M. Al-Zoubi
a   Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan   Email: rmzoubi@just.edu.jo
,
Khaled T. Jaradat
a   Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan   Email: rmzoubi@just.edu.jo
,
Walid K. Al-Jammal
a   Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan   Email: rmzoubi@just.edu.jo
,
Robert McDonald
b   Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, T6G 2G2, Canada
› Author Affiliations
This work was generously funded by Jordan University of Science and Technology (JUST) - Deanship of Research - Jordan (Grant No. 393/2016).
Further Information

Publication History

Received: 04 January 2020

Accepted after revision: 02 March 2020

Publication Date:
20 March 2020 (online)


Abstract

An efficient and versatile synthesis of 2,6-diiodobenzaldehydes via highly regioselective metal–iodine exchange (MIE) of 5-substituted 1,2,3-triiodobenzenes is reported. The nature of substituents (R) on the phenyl has a large influence on the reactivity of reaction but not on the regioselectivity. The regioselectivity of the MIE can be controlled by the use of ethyl formate as a formylating agent providing only the internal benzaldehyde derivatives in excellent site-selectivity. The best reactivity and the highest isolated yields were furnished with products bearing electron-rich substituents. Several chemical transformations of the target compound as a valuable precursor in synthesis were also demonstrated providing the desired derivatives in good isolated yields. This report discloses a protocol for the synthesis of 2,6-diiodobenzaldehyde derivatives that is scalable, general in scope, and indeed difficult to be made by other means.

Supporting Information

 
  • References and Notes

  • 1 More SS, Vince R. US 20180230105A1, 2018
  • 2 Dreher MR, Lewis AL, Willis SL. WO 2017158482A1, 2017
  • 3 Hohn S, Lewis AL, Willis SL, Dreher MR, Ahrafi K, Tang Y. WO 2015033093A1, 2015
  • 4 Zech SG, Kohlmann A, Zhou T, Li F, Squillace RM, Parillon LE, Greenfield MT, Miller DP, Qi J, Thomas RM, Wang Y, Xu Y, Miret JJ, Shakespeare WC, Zhu X, Dalgarno DC. J. Med. Chem. 2016; 59: 671
    • 6a Tsuchiya T, Wasnaire P, Hoffmann S, Seitz T, Hillebrand S, Benting J, Schmidt JP, Cristau P. WO 2013098229A2, 2013
    • 6b Ek F, Almen T, Gardner R. WO 2000066544A1, 2000
    • 6c Fouda AM, Assiri MA, Mora A, Ali TE, Afifi TH, El-Agrody AM. Bioorg. Chem. 2019; 93: 103289
  • 7 Scifinder: 1 g/USD 4998 for CAS 1806389-59-2; 1 g/USD 5988 for CAS 21693922-49-6; 1 g/USD 4998 for CAS 1804422-78-3.
  • 10 Cvengroš J, Stolz D, Togni A. Synthesis 2009; 2818
  • 13 CCDC 1965598 and 1965599 contain the supplementary crystallographic data for compounds 10A and 19, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 15 Schnuerch M, Spina M, Khan AF, Mihovilovic MD, Stanetty P. Chem. Soc. Rev. 2007; 36: 1046
  • 16 General Procedure for the MIE Reaction between 5-Substituted 1,2,3-Triiodobenzenes and Ethyl FormateA flame-dried round-bottom flask was charged with 5-substituted 1,2,3-triiodobenzene (1.02 mmol, 1.0 equiv.) and 10 mL of freshly dried THF. The mixture was cooled down under argon gas to –78 °C. 2 M solution of isopropylmagnesium chloride (1.15 mmol, 1.1 equiv.) was added dropewise over 1 h. The solution was stirred for 30 min at the same temperature. Ethyl formate (1.53 mmol, 1.50 equiv.) was added and the mixture left to warm up overnight. Saturated NH4Cl (20 mL) was added, and the reaction mixture was extracted with diethyl ether (2 × 50 mL). Organic layers were combined, washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by flash chromatography (5% EtOAc/hexane) to yield the pure desired product.2,6-Diiodobenzaldehyde (6A)Yellow solid (261 mg, 71% yield). Mp 58–60 °C. IR (cast film): 3026, 3008, 2913, 2887, 1715, 1613, 1598, 983, 864 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.78 (s, 1 H), 8.01 (d, 2 H, J = 7.8 Hz), 6.86 (t, 1 H, J = 7.8 Hz). 13C NMR (100 MHz, CDCl3): δ = 195.7, 141.6, 135.6, 134.6, 97.5. HRMS (ESI): m/z calcd for C7H5I2O [M + H]+: 358.8430; found: 358.8425.4-Fluoro-2,6-diiodobenzaldehyde (7A)Yellow solid (192 mg, 50% yield). Mp 91–93 °C. IR (cast film): 3028, 3004, 2979, 2846, 1719, 1642, 1599, 976, 817, 688, 524 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.73 (s, 1 H), 7.80 (d, 2 H, J = 7.4 Hz). 13C NMR (100 MHz, CDCl3): δ = 194.5, 164.5, 161.8, 131.3 131.29, 129.2 129.0, 97.7, 97.6. HRMS (ESI): m/z calcd for C7H4FI2O [M + H]+: 376.8336; found: 376.8331.4-Chloro-2,6-diiodobenzaldehyde (8A)Yellow solid (312 mg, 78% yield). Mp 65–67 °C. IR (cast film): 3012, 3004, 2941, 2876, 1709, 1621, 1587, 1008, 867, 726, 553 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.72 (s, 1 H), 8.05 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 194.7, 141.1, 139.7, 133.5, 97.4. HRMS (ESI): m/z calcd for C7H4ClI2O [M + H]+: 392.8040; found: 392.8033.4-Bromo-2,6-diiodobenzaldehyde (9A)Yellow solid (201 mg, 45% yield). Mp 101–103 °C. IR (cast film): 3024, 3004, 2943, 2869, 1706, 1607, 1587, 943, 634 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.70 (s, 1 H), 8.19 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 194.8, 143.8, 134.0, 128.3, 97.6. HRMS (ESI): m/z calcd for C7H4BrI2O [M + H]+: 436.7535; found: 436.7528.2,6-Diiodo-4-methylbenzaldehyde (10A)Yellow solid (288 mg, 76% yield). Mp 130–132 °C. IR (cast film): 3031, 3010, 3004, 2953, 2896, 1713, 1621, 1589, 981, 736 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.76 (s, 1 H), 7.86 (s, 2 H), 2.31 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 195.5, 146.1, 142.5, 132.2, 98.0, 20.5. HRMS (ESI): m/z calcd for C8H7I2O [M + H]+: 372.8586; found: 372.8584.2,6-Diiodo-4-methoxybenzaldehyde (11A)Yellow solid (317 mg, 80% yield). Mp 83–85 °C. IR (cast film): 3027, 3011, 2945, 2879, 1713, 1621, 1587, 1207, 1186, 873, 736 cm–1. 1H NMR (400MHz, CDCl3): δ = 9.71 (s, 1 H), 7.59 (s, 2 H), 3.86 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 194.8, 162.6, 127.8, 126.7, 99.4, 56.2. HRMS (ESI): m/z calcd for C8H7I2O2 [M + H]+: 388.8535; found: 388.8529.Methyl 4-formyl-3,5-diiodobenzoate (12A)Yellow solid (280 mg, 66% yield). Mp 76–78 °C. IR (cast film): 3031, 3015, 2983, 2907, 1741, 1716, 1627, 1583, 1207, 1131, 867, 627 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.78 (s, 1 H), 8.61 (s, 2 H), 3.96 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 195.2, 163.5, 142.1, 139.4, 134.9, 96.1, 53.2. HRMS (ESI): m/z calcd for C9H7I2O3 [M + H]+: 416.8485; found: 416.8477.2-Chloro-6-iodobenzaldehyde (13A)Yellow solid (209 mg, 77% yield). Mp 80–82 °C. IR (cast film): 3021, 3002, 2937, 2889, 1719, 1641, 1599, 867, 764, 537 cm–1. 1H NMR (400 MHz, CDCl3): δ = 10.19 (s, 1 H), 7.94 (d, 1 H, J = 8.0 Hz), 7.48 (d, 1 H, J = 8.0 Hz), 7.13 (t, 1 H, J = 7.9 Hz). 13C NMR (100 MHz, CDCl3): δ = 191.7, 140.1, 136.9, 134.1, 133.1, 131.2, 96.4. HRMS (ESI): m/z for C7H5ClIO [M + H]+: 266.9074; found: 266.9067.2-Bromo-6-iodobenzaldehyde (14A)Yellow solid (238 mg, 75% yield). Mp 87–89 °C. IR (cast film): 3019, 3004, 2983, 2876, 1714, 1607, 1596, 861, 584 cm–1. 1H NMR (400 MHz, CDCl3): δ = 10.05 (s, 1 H), 7.98 (d, 1 H, J = 8.0 Hz), 7.68 (d, 1 H, J = 8.0 Hz), 7.03 (t, 1 H, J = 8.0 Hz). 13C NMR (100 MHz, CDCl3): δ = 193.1, 140.9, 134.6, 134.4, 134.4, 125.4, 96.5. HRMS (ESI): m/z for C7H5BrIO [M + H]+: 310.8568; found: 310.8564.