Subscribe to RSS
DOI: 10.1055/s-0040-1720954
Yttrium-90 Radioembolization Dosimetry: What Trainees Need to Know
Funding/Support No funding was received to prepare this manuscript.Erratum: Yttrium-90 Radioembolization Dosimetry: What Trainees Need to Know
Yttrium-90 radioembolization (Y90-RE), also known as transarterial radioembolization (TARE) or selective internal radiation therapy (SIRT), is a form of brachytherapy that has become an established liver-directed therapy for primary and secondary hepatic malignancies.[1] [2] [3] [4] [5] [6] [7] While a degree of embolization and ischemia may occur, the dominant mechanism of action for Y90-RE is radiation-induced necrosis from targeted transarterial administration of millions of Y90-labeled microspheres. The Y90 within these microspheres exert their effects primarily by undergoing β-decay to stable zirconium-90, which is not known to have any clinical effects.[8] [9] [10] The β-decay of Y90 results in the release of high-energy β-particles (i.e., electrons or β−) with an average energy of 0.9267 MeV (maximum of 2.28 MeV) and a half-life of 64.04 hours (2.67 days), which translates to 94% of the Y90 radiation being delivered within 11 days. These β-particles penetrate nearby tissues an average of 2.5 mm (maximum of 11 mm), resulting in the sought-after effect of radiation damage to nearby structures.[11] Additional types of radiation also occur as a result of Y90 decay. Although these are summarized in [Fig. 1], an in-depth discussion of them is beyond the scope of this article.
Currently, there are two commercially available and Food and Drug Administration (FDA)-approved radioembolization microspheres in the United States: resin microspheres (SIR-Spheres; Sirtex Medical Inc, Woburn, MA), whose original formulations were developed in the mid-20th century, and glass microspheres (TheraSphere; Boston Scientific, Marlborough, MA), which were developed in the early 1980s.[9] Properties of these biocompatible and nonbiodegradable microspheres, at the time of calibration, are outlined in [Table 1].[9] [12] [13] Resin microspheres are FDA approved only for the treatment of unresectable metastatic liver tumors (MLTs) from primary colorectal cancer with adjuvant intrahepatic artery chemotherapy (IHAC) of FUDR (Floxuridine).[14] Glass microspheres are FDA approved, under a humanitarian drug exemption, only for the sole or neoadjuvant treatment of unresectable hepatocellular carcinoma (HCC).[15] Nevertheless, both types of microspheres are frequently used off-label for the treatment of various primary or secondary hepatic malignancies.[16] [17]
Notes: Please check the latest package insert for updated information, including availability of customizable doses. For reference, the specific gravity of blood is 1.05 g/dL.
As a result of the mounting evidence for a clear dose–effect relationship,[10] the goal of Y90-RE has evolved to reflect a classical principle of oncology—which is to deliver the maximum tolerated dose. Achieving this goal requires understanding of the multiple steps in the pre-, peri-, and posttherapy phases of Y90-RE. Several articles have sought to comprehensively explain the rationale and technical challenges found in each of these steps.[18] [19] However, a paucity of literature comprehensively describing the technical strengths and challenges of the commonly used Y90-RE dosimetry models remains. As an integral part of the team and an authorized user of Y90-RE devices, the interventional radiologist must have a fundamental understanding of the involved dosimetry. Therefore, the aim of this article is to provide a fundamental background of the rationale, limitations, and strengths involved in Y90-RE dosimetry planning, and the strategies employed in clinical practice when treating patients with Y90-RE.
Publication History
Article published online:
11 December 2020
© 2020. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Ahmadzadehfar H, Biersack H-J, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med 2010; 40 (02) 105-121
- 2 Kennedy A, Nag S, Salem R. et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys 2007; 68 (01) 13-23
- 3 Salem R, Lewandowski RJ, Sato KT. et al. Technical aspects of radioembolization with 90Y microspheres. Tech Vasc Interv Radiol 2007; 10 (01) 12-29
- 4 Wang S-C, Bester L, Burnes JP. et al. Clinical care and technical recommendations for 90yttrium microsphere treatment of liver cancer. J Med Imaging Radiat Oncol 2010; 54 (03) 178-187
- 5 Salem R, Lewandowski RJ, Mulcahy MF. et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138 (01) 52-64
- 6 Lau WY, Lai ECH. Salvage surgery following downstaging of unresectable hepatocellular carcinoma--a strategy to increase resectability. Ann Surg Oncol 2007; 14 (12) 3301-3309
- 7 Murthy R, Habbu A, Salem R. Trans-arterial hepatic radioembolisation of yttrium-90 microspheres. Biomed Imaging Interv J 2006; 2 (03) e43
- 8 Tong AKT, Kao YH, Too CW, Chin KFW, Ng DCE, Chow PKH. Yttrium-90 hepatic radioembolization: clinical review and current techniques in interventional radiology and personalized dosimetry. Br J Radiol 2016; 89 (1062): 20150943
- 9 Westcott MA, Coldwell DM, Liu DM, Zikria JF. The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv Radiat Oncol 2016; 1 (04) 351-364
- 10 Bastiaannet R, Kappadath SC, Kunnen B, Braat AJAT, Lam MGEH, de Jong HWAM. The physics of radioembolization. EJNMMI Phys 2018; 5 (01) 22
- 11 Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. BioMed Res Int 2015; 2015: 481279
- 12 TheraSphere Yttrium-90 Microspheres Package Insert, Boston Scientific Corporation. Accessed March 30, 2020 at: https://btgplc.com/BTG/media/TheraSphere-Documents/PDF/10093509-Rev8_English-searchable.pdf
- 13 SIR-Spheres Package Insert, SIRTeX Medical Limited. Accessed March 30, 2020 at: https://www.sirtex.com/media/155126/ssl-us-13.pdf
- 14 FDA, SIR-Spheres—Summary of Safety and Effectiveness Data. Accessed July 15, 2020 at: https://www.accessdata.fda.gov/cdrh_docs/pdf/P990065b.pdf
- 15 FDA, TheraSphere—Summary of Safety and Probable Benefit. Accessed July 15, 2020 at: https://www.accessdata.fda.gov/cdrh_docs/pdf/H980006B.pdf
- 16 Vente MAD, Wondergem M, van der Tweel I. et al. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. Eur Radiol 2009; 19 (04) 951-959
- 17 Devcic Z, Rosenberg J, Braat AJA. et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. J Nucl Med 2014; 55 (09) 1404-1410
- 18 Kim SP, Cohalan C, Kopek N, Enger SA. A guide to 90Y radioembolization and its dosimetry. Phys Med 2019; 68: 132-145
- 19 Salem R, Padia SA, Lam M. et al. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2019; 46 (08) 1695-1704
- 20 Lewandowski RJ, Salem R. Yttrium-90 radioembolization of hepatocellular carcinoma and metastatic disease to the liver. Semin Intervent Radiol 2006; 23 (01) 64-72
- 21 Snyder W, Ford M, Warner G, Watson S. Revised: estimates of absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet #5. 1978
- 22 Kao YH, Magsombol BM, Toh Y. et al. Personalized predictive lung dosimetry by technetium-99m macroaggregated albumin SPECT/CT for yttrium-90 radioembolization. EJNMMI Res 2014; 4 (01) 33
- 23 Cerrito L, Annicchiarico BE, Iezzi R, Gasbarrini A, Pompili M, Ponziani FR. Treatment of hepatocellular carcinoma in patients with portal vein tumor thrombosis: Beyond the known frontiers. World J Gastroenterol 2019; 25 (31) 4360-4382
- 24 Strasberg SM, Belghiti J, Clavien P-A. et al. The Brisbane 2000 terminology of liver anatomy and resections. HPB (Oxford) 2000; 2 (03) 333-339
- 25 Germain T, Favelier S, Cercueil JP, Denys A, Krausé D, Guiu B. Liver segmentation: practical tips. Diagn Interv Imaging 2014; 95 (11) 1003-1016
- 26 Salem R, Thurston KG. Radioembolization with 90yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: Technical and methodologic considerations. J Vasc Interv Radiol 2006; 17 (08) 1251-1278
- 27 Gaba RC, Zivin SP, Dikopf MS. et al. Characteristics of primary and secondary hepatic malignancies associated with hepatopulmonary shunting. Radiology 2014; 271 (02) 602-612
- 28 Xing M, Lahti S, Kokabi N, Schuster DM, Camacho JC, Kim HS. 90Y radioembolization lung shunt fraction in primary and metastatic liver cancer as a biomarker for survival. Clin Nucl Med 2016; 41 (01) 21-27
- 29 Kallini JR, Gabr A, Hickey R. et al. Indicators of lung shunt fraction determined by technetium-99 m macroaggregated albumin in patients with hepatocellular carcinoma. Cardiovasc Intervent Radiol 2017; 40 (08) 1213-1222
- 30 Olorunsola OG, Kohi MP, Behr SC. et al. Imaging predictors of elevated lung shunt fraction in patients being considered for yttrium-90 radioembolization. J Vasc Interv Radiol 2015; 26 (10) 1472-1478
- 31 Haste P, Tann M, Persohn S. et al. Correlation of technetium-99m macroaggregated albumin and yttrium-90 glass microsphere biodistribution in hepatocellular carcinoma: a retrospective review of pretreatment single photon emission CT and posttreatment positron emission tomography/CT. J Vasc Interv Radiol 2017; 28 (05) 722-730.e1
- 32 Garin E, Rolland Y, Laffont S, Edeline J. Clinical impact of (99m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres. Eur J Nucl Med Mol Imaging 2016; 43 (03) 559-575
- 33 Uliel L, Royal HD, Darcy MD, Zuckerman DA, Sharma A, Saad NE. From the angio suite to the γ-camera: vascular mapping and 99mTc-MAA hepatic perfusion imaging before liver radioembolization -- a comprehensive pictorial review. J Nucl Med 2012; 53 (11) 1736-1747
- 34 Allred JD, Niedbala J, Mikell JK, Owen D, Frey KA, Dewaraja YK. The value of 99mTc-MAA SPECT/CT for lung shunt estimation in 90Y radioembolization: a phantom and patient study. EJNMMI Res 2018; 8 (01) 50
- 35 Lopez B, Mahvash A, Lam MGEH, Kappadath SC. Calculation of lung mean dose and quantification of error for 90 Y-microsphere radioembolization using 99m Tc-MAA SPECT/CT and diagnostic chest CT. Med Phys 2019; 46 (09) 3929-3940
- 36 Boston Scientific, TheraSphere Package Insert. Accessed December 6, 2019 at: https://btgplc.com/BTG/media/TheraSphere-Documents/PDF/TheraSphere-Package-Insert_USA_Rev-14.pdf
- 37 Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med 1997; 24 (03) 293-298
- 38 Leung TWT, Lau WY, Ho SKW. et al. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 1995; 33 (04) 919-924
- 39 Margolis LW, Phillips TL. Whole-lung irradiation for metastatic tumor. Radiology 1969; 93 (05) 1173-1179
- 40 Salem R, Parikh P, Atassi B. et al. Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. Am J Clin Oncol 2008; 31 (05) 431-438
- 41 Bilbao JI, Reiser MF. eds. Yttrium-90 microspheres for other liver metastases. In: Liver Radioembolization with 90Y Microspheres. Berlin: Springer-Verlag; 2014: 57-58
- 42 Committee on Medical Internal Radiation Dose (MIRD)—SNMMI. Accessed February 25, 2020 at: http://www.snmmi.org/AboutSNMMI/CommitteeContent.aspx?ItemNumber=12475&navItemNumber=763
- 43 Snyder W, Ford M, Warner G, Watson S. MIRD Pamphlet #11: S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs. January 1975
- 44 Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med 2006; 47 (07) 1209-1211
- 45 Toohey RE, Stabin MG, Watson EE. The AAPM/RSNA physics tutorial for residents: internal radiation dosimetry: principles and applications. Radiographics 2000; 20 (02) 533-546 , quiz 531–532
- 46 Ho S, Lau WY, Leung TW. et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med 1996; 23 (08) 947-952
- 47 Gnesin S, Canetti L, Adib S. et al. Partition model-based 99mTc-MAA SPECT/CT predictive dosimetry compared with 90Y TOF PET/CT posttreatment dosimetry in radioembolization of hepatocellular carcinoma: a quantitative agreement comparison. J Nucl Med 2016; 57 (11) 1672-1678
- 48 Wondergem M, Smits MLJ, Elschot M. et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med 2013; 54 (08) 1294-1301
- 49 Ilhan H, Goritschan A, Paprottka P. et al. Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med 2015; 56 (11) 1654-1660
- 50 Tafti BA, Padia SA. Dosimetry of Y-90 microspheres utilizing Tc-99m SPECT and Y-90 PET. Semin Nucl Med 2019; 49 (03) 211-217
- 51 Vauthey JN, Abdalla EK, Doherty DA. et al. Body surface area and body weight predict total liver volume in Western adults. Liver Transpl 2002; 8 (03) 233-240
- 52 Kao YH, Tan EH, Ng CE, Goh SW. Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review. Ann Nucl Med 2011; 25 (07) 455-461
- 53 Riaz A, Gates VL, Atassi B. et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys 2011; 79 (01) 163-171
- 54 Lau WY, Kennedy AS, Kim YH. et al. Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys 2012; 82 (01) 401-407
- 55 Malhotra A, Liu DM, Talenfeld AD. Radiation segmentectomy and radiation lobectomy: a practical review of techniques. Tech Vasc Interv Radiol 2019; 22 (02) 49-57
- 56 Vouche M, Habib A, Ward TJ. et al. Unresectable solitary hepatocellular carcinoma not amenable to radiofrequency ablation: multicenter radiology-pathology correlation and survival of radiation segmentectomy. Hepatology 2014; 60 (01) 192-201
- 57 Padia SA, Johnson GE, Horton KJ. et al. Segmental yttrium-90 radioembolization versus segmental chemoembolization for localized hepatocellular carcinoma: results of a single-center, retrospective, propensity score-matched study. J Vasc Interv Radiol 2017; 28 (06) 777-785.e1
- 58 Gates VL, Hickey R, Marshall K. et al. Gastric injury from (90)Y to left hepatic lobe tumors adjacent to the stomach: fact or fiction?. Eur J Nucl Med Mol Imaging 2015; 42 (13) 2038-2044
- 59 Lewandowski RJ, Donahue L, Chokechanachaisakul A. et al. (90) Y radiation lobectomy: outcomes following surgical resection in patients with hepatic tumors and small future liver remnant volumes. J Surg Oncol 2016; 114 (01) 99-105
- 60 Vouche M, Lewandowski RJ, Atassi R. et al. Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as a bridge to resection. J Hepatol 2013; 59 (05) 1029-1036
- 61 Gaba RC, Lewandowski RJ, Kulik LM. et al. Radiation lobectomy: preliminary findings of hepatic volumetric response to lobar yttrium-90 radioembolization. Ann Surg Oncol 2009; 16 (06) 1587-1596
- 62 Siddiqi NH, Devlin PM. Radiation lobectomy-a minimally invasive treatment model for liver cancer: case report. J Vasc Interv Radiol 2009; 20 (05) 664-669
- 63 Palard X, Edeline J, Rolland Y. et al. Dosimetric parameters predicting contralateral liver hypertrophy after unilobar radioembolization of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2018; 45 (03) 392-401
- 64 Ahmadzadehfar H, Meyer C, Ezziddin S. et al. Hepatic volume changes induced by radioembolization with 90Y resin microspheres. A single-centre study. Eur J Nucl Med Mol Imaging 2013; 40 (01) 80-90
- 65 Edeline J, Lenoir L, Boudjema K. et al. Volumetric changes after (90)y radioembolization for hepatocellular carcinoma in cirrhosis: an option to portal vein embolization in a preoperative setting?. Ann Surg Oncol 2013; 20 (08) 2518-2525
- 66 Fernández-Ros N, Silva N, Bilbao JI. et al. Partial liver volume radioembolization induces hypertrophy in the spared hemiliver and no major signs of portal hypertension. HPB (Oxford) 2014; 16 (03) 243-249
- 67 Garlipp B, de Baere T, Damm R. et al. Left-liver hypertrophy after therapeutic right-liver radioembolization is substantial but less than after portal vein embolization. Hepatology 2014; 59 (05) 1864-1873
- 68 Teo JY, Goh BKP, Cheah FK. et al. Underlying liver disease influences volumetric changes in the spared hemiliver after selective internal radiation therapy with 90Y in patients with hepatocellular carcinoma. J Dig Dis 2014; 15 (08) 444-450
- 69 SIRTeX Medical SIR-Sphere Training Program: Physicians and Institutions: Page 35 of 111. SIRTEX Medical Limited
- 70 Gulec SA, Mesoloras G, Dezarn WA, McNeillie P, Kennedy AS. Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J Transl Med 2007; 5: 15
- 71 Birgin E, Rasbach E, Seyfried S. et al. Contralateral liver hypertrophy and oncological outcome following radioembolization with 90 y-microspheres: a systematic review. Cancers (Basel) 2020; 12 (02) E294
- 72 Cremonesi M, Chiesa C, Strigari L. et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol 2014; 4: 210
- 73 Vouche M, Degrez T, Bouazza F. et al. Sequential tumor-directed and lobar radioembolization before major hepatectomy for hepatocellular carcinoma. World J Hepatol 2017; 9 (36) 1372-1377
- 74 Teo JY, Allen Jr JC, Ng DC. et al. A systematic review of contralateral liver lobe hypertrophy after unilobar selective internal radiation therapy with Y90. HPB (Oxford) 2016; 18 (01) 7-12
- 75 Toskich BB, Liu DM. Y90 radioembolization dosimetry: concepts for the interventional radiologist. Tech Vasc Interv Radiol 2019; 22 (02) 100-111
- 76 Abouchaleh N, Gabr A, Ali R. et al. 90 Y radioembolization for locally advanced hepatocellular carcinoma with portal vein thrombosis: long-term outcomes in a 185-patient cohort. J Nucl Med 2018; 59 (07) 1042-1048
- 77 Garin E, Rolland Y, Edeline J. et al. Personalized dosimetry with intensification using 90Y-loaded glass microsphere radioembolization induces prolonged overall survival in hepatocellular carcinoma patients with portal vein thrombosis. J Nucl Med 2015; 56 (03) 339-346
- 78 Garin E, Rolland Y, Edeline J. 90Y-loaded microsphere SIRT of HCC patients with portal vein thrombosis: high clinical impact of 99mTc-MAA SPECT/CT-based dosimetry. Semin Nucl Med 2019; 49 (03) 218-226
- 79 Somma F, Stoia V, Serra N, D'Angelo R, Gatta G, Fiore F. Yttrium-90 trans-arterial radioembolization in advanced-stage HCC: the impact of portal vein thrombosis on survival. PLoS One 2019; 14 (05) e0216935
- 80 Sangro B, Gil-Alzugaray B, Rodriguez J. et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 2008; 112 (07) 1538-1546
- 81 Riaz A, Lewandowski RJ, Kulik LM. et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol 2009; 20 (09) 1121-1130 , quiz 1131
- 82 Lam MGEH, Louie JD, Iagaru AH, Goris ML, Sze DY. Safety of repeated yttrium-90 radioembolization. Cardiovasc Intervent Radiol 2013; 36 (05) 1320-1328
- 83 Elsayed M, Ermentrout RM, Sethi I. et al. Incidence of radioembolization-induced liver disease and liver toxicity following repeat 90Y-radioembolization: outcomes at a large tertiary care center. Clin Nucl Med 2020; 45 (02) 100-104
- 84 McNeillie P, Kennedy AS, Dezarn W, Sailer SL, England M, Overton C. Liver tolerance to repeat 90Y-microsphere radioembolization. J Med Device 2008; 2 (02) 027539
- 85 Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol 2014; 4: 198
- 86 Gil-Alzugaray B, Chopitea A, Iñarrairaegui M. et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013; 57 (03) 1078-1087
- 87 Piana PM, Gonsalves CF, Sato T. et al. Toxicities after radioembolization with yttrium-90 SIR-spheres: incidence and contributing risk factors at a single center. J Vasc Interv Radiol 2011; 22 (10) 1373-1379
- 88 Gaba RC. Planning arteriography for yttrium-90 microsphere radioembolization. Semin Intervent Radiol 2015; 32 (04) 428-438
- 89 Vesselle G, Petit I, Boucebci S, Rocher T, Velasco S, Tasu JP. Radioembolization with yttrium-90 microspheres work up: practical approach and literature review. Diagn Interv Imaging 2015; 96 (06) 547-562
- 90 Lopera JE. The Amplatzer vascular plug: review of evolution and current applications. Semin Intervent Radiol 2015; 32 (04) 356-369
- 91 Meek J, Fletcher S, Gauss CH, Bezold S, Borja-Cacho D, Meek M. Temporary balloon occlusion for hepatic arterial flow redistribution during yttrium-90 radioembolization. J Vasc Interv Radiol 2019; 30 (08) 1201-1206
- 92 Sirtex - FLEXdose Delivery Program. Accessed April 13, 2020 at: https://www.sirtex.com/us/clinicians/flexdose-delivery-program/
- 93 TheraSphere™ Y-90 Glass Microspheres - TheraSphere-iDOC - Boston Scientific. Accessed April 13, 2020 at: https://www.bostonscientific.com/en-US/products/cancer-therapies/therasphere-y90-glass-microspheres/ordering-information/therasphere-idoc.html
- 94 Walrand S, Hesse M, Chiesa C, Lhommel R, Jamar F. The low hepatic toxicity per Gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging. J Nucl Med 2014; 55 (01) 135-140
- 95 Yang Y, Si T. Yttrium-90 transarterial radioembolization versus conventional transarterial chemoembolization for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Cancer Biol Med 2018; 15 (03) 299-310