Z Gastroenterol 2016; 54(06): 569-578
DOI: 10.1055/s-0042-103248
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Artefakte in der Sonografie und ihre Bedeutung für die internistische und gastroenterologische Diagnostik – Teil 2: Artefakte im Farb- und Spektraldoppler

Ultrasound artifacts and their diagnostic significance in internal medicine and gastroenterology – part 2: color and spectral Doppler artifacts
C. Jenssen1
1   Krankenhaus Märkisch Oderland GmbH, Strausberg, Deutschland
,
J. Tuma1
2   Sonografie Institut, Uster, Switzerland
,
K. Möller
3   SANA-Klinikum Lichtenberg, Berlin, Deutschland
,
X. W. Cui
4   Caritas-Krankenhaus Bad Mergentheim, Bad Mergentheim, Deutschland
,
H. Kinkel
5   Krankenhaus Düren GmbH, Düren, Deutschland
,
S. Uebel
6   Hitachi Medical Systems GmbH, Wiesbaden, Deutschland
,
C. F. Dietrich
4   Caritas-Krankenhaus Bad Mergentheim, Bad Mergentheim, Deutschland
› Author Affiliations
Further Information

Publication History

28 September 2015

10 February 2016

Publication Date:
10 June 2016 (online)

Zusammenfassung

Artefakte (Bildfehler) in der Sonografie entstehen durch Interaktion der Ultraschallwellen mit den biologischen Strukturen und Geweben sowie mit Fremdkörpern während ihrer Ausbreitung im Körper. Ihre Bedeutung ist ambivalent. Einerseits können sie diagnostisch genutzt werden, andererseits können sie erheblich stören oder fehlerhafte Interpretationen begünstigen. Kenntnisse über die Entstehung, Vermeidung und Interpretation von Artefakten sind elementare Voraussetzung für die korrekte klinische Befundung von Ultraschallbildern. Nachdem im ersten Teil der Übersicht physikalische Grundlagen von Artefakten und die wichtigsten Artefakte in der B-Mode-Sonografie dargestellt worden sind, fokussiert Teil 2 auf die klinisch relevanten Artefakte der Doppler- und Farbduplexsonografie. Diskutiert werden die daraus resultierenden Interpretationsprobleme und Fehlerquellen, aber auch die diagnostische Nutzbarkeit von Farbdopplerartefakten.

Abstract

Artifacts in ultrasonographic diagnostics are a result of the physical properties of the ultrasound waves and are caused by interaction of the ultrasound waves with biological structures and tissues of the body and with foreign materials. On the one hand, they may be diagnostically helpful. On the other hand, they may be distracting and may lead to misdiagnosis. Profound knowledge of the causes, avoidance, and interpretation of artifacts is a necessary precondition for correct clinical appraisal of ultrasound images. Part 1 of this review commented on the physics of artifacts and described the most important B-mode artifacts. Part 2 focuses on the clinically relevant artifacts in Doppler and color-coded duplex sonography. Problems and pitfalls of interpretation arising from artifacts, as well as the diagnostic use of Doppler and colour-coded duplex sonography, are discussed.

 
  • Literatur

  • 1 Elfarnawany M, Pinter SZ, Lacefield JC. Improved objective selection of power Doppler wall-filter cut-off velocity for accurate vascular quantification. Ultrasound Med Biol 2012; 38: 1429-1439
  • 2 Rubens DJ, Bhatt S, Nedelka S et al. Doppler artifacts and pitfalls. Radiol Clin North Am 2006; 44: 805-835
  • 3 Pozniak MA, Zagzebski JA, Scanlan KA. Spectral and color Doppler artifacts. Radiographics 1992; 12: 35-44
  • 4 Hindi A, Peterson C, Barr RG. Artifacts in diagnostic ultrasound. Reports in Medical Imaging 2013; 6: 29-49
  • 5 Dietrich CF, Jedrzejczyk M, Ignee A. Sonographic assessment of splanchnic arteries and the bowel wall. Eur J Radiol 2007; 64: 202-212
  • 6 Ignee A, Jedrejczyk M, Schuessler G et al. Quantitative contrast enhanced ultrasound of the liver for time intensity curves-Reliability and potential sources of errors. Eur J Radiol 2010; 73: 153-158
  • 7 Dietrich CF, Ignee A, Greis C et al. Artifacts and pitfalls in contrast-enhanced ultrasound of the liver. Ultraschall in Med 2014; 35: 108-125
  • 8 Dietrich CF, Ignee A, Hocke M et al. Pitfalls and artefacts using contrast enhanced ultrasound. Z Gastroenterol 2011; 49: 350-356
  • 9 Claudon M, Dietrich CF, Choi BI et al. Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver – update 2012: A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol 2013; 39: 187-210
  • 10 Claudon M, Dietrich CF, Choi BI et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver – update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall in Med 2013; 34: 11-29
  • 11 Dietrich CF, Averkiou MA, Correas JM et al. An EFSUMB introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for quantification of tumour perfusion. Ultraschall in Med 2012; 33: 344-351
  • 12 Cui XW, Ignee A, Jedrzejczyk M et al. Dynamic Vascular Pattern (DVP), a quantification tool for contrast enhanced ultrasound. Z Gastroenterol 2013; 51: 427-431
  • 13 Cui XW, Ignee A, Hocke M et al. Prolonged heterogeneous liver enhancement on contrast-enhanced ultrasound. Ultraschall in Med 2014; 35: 246-252
  • 14 Dietrich CF. Echtzeit-Gewebeelastographie. Anwendungsmöglichkeiten nicht nur im Gastrointestinaltrakt. Endoskopie heute 2010; 23: 177-212
  • 15 Bamber J, Cosgrove D, Dietrich CF et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in Med 2013; 34: 169-184
  • 16 Cosgrove D, Piscaglia F, Bamber J et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall in Med 2013; 34: 238-253
  • 17 Dietrich CF. Elastography, the new dimension in ultrasonography. Praxis (Bern 1994) 2011; 100: 1533-1542
  • 18 Dietrich CF, Saftoiu A, Jenssen C. Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review. Eur J Radiol 2014; 83: 405-414
  • 19 Cui XW, Pirri C, Ignee A et al. Measurement of Shear Wave Velocity Using Acoustic Radiation Force Impulse Imaging is not Hampered by Previous Use of Ultrasound Contrast Agents. Z Gastroenterol 2014; 52: 649-653
  • 20 Cui XW, Friedrich-Rust M, De Molo C et al. Liver elastography, comments on EFSUMB elastography guidelines 2013. World J Gastroenterol 2013; 19: 6329-6347
  • 21 Dietrich CF, Lembcke B, Jenssen C et al. Intestinal Ultrasound in Rare Gastrointestinal Diseases, Update, Part 2. Ultraschall in Med 2015; 36: 428-456
  • 22 Dietrich CF, Lembcke B, Jenssen C et al. Intestinal ultrasound in rare gastrointestinal diseases, update, part 1. Ultraschall in Med 2014; 35: 400-421
  • 23 Schreiber-Dietrich D, Chiorean L, Cui XW et al. Particularities of Crohn's disease in pediatric patients: current status and perspectives regarding imaging modalities. Expert Rev Gastroenterol Hepatol 2015; 9: 1313-1325
  • 24 Dietrich CF, Mathis G, Cui XW et al. Ultrasound of the pleurae and lungs. Ultrasound Med Biol 2015; 41: 351-365
  • 25 Barreiros AP, Chiorean L, Braden B et al. Ultrasound in rare diffuse liver disease. Z Gastroenterol 2014; 52: 1247-1256
  • 26 Dietrich CF, Kabaalioglu A, Brunetti E et al. Fasciolosis. Z Gastroenterol 2015; 53: 285-290
  • 27 Ignee A, Cui X, Hirche T et al. Percutaneous biopsies of splenic lesions--a clinical and contrast enhanced ultrasound based algorithm. Clin Hemorheol Microcirc 2014; 58: 529-541
  • 28 Dietrich CF, Cui XW, Chiorean L et al. Local ablative procedures of the liver. Z Gastroenterol 2015; 53: 579-590
  • 29 Dietrich CF, Hocke M, Jenssen C. Interventional endosonography. Ultraschall in Med 2011; 32: 8-22 , quiz
  • 30 Ignee A, Jenssen C, Cui XW et al. Intracavitary contrast-enhanced ultrasound in abscess drainage – feasibility and clinical value. Scand J Gastroenterol 2015; 1-7
  • 31 Ignee A, Schuessler G, Cui XW et al. Intracavitary contrast medium ultrasound – different applications, a review of the literature ad future prospects. Ultraschall in Med 2013; 34: 504-525
  • 32 Ignee A, Baum U, Schuessler G et al. Contrast-enhanced ultrasound-guided percutaneous cholangiography and cholangiodrainage (CEUS-PTCD). Endoscopy 2009; 41: 725-726
  • 33 Ignee A, Cui X, Schuessler G et al. Percutaneous transhepatic cholangiography and drainage using extravascular contrast enhanced ultrasound. Z Gastroenterol 2015; 53: 385-390
  • 34 Nurnberg D, Jenssen C, Cui X et al. Ultrasound in palliative care medicine. Z Gastroenterol 2015; 53: 409-416
  • 35 Dietrich CF, Frey H, Greis C. Grundlagen. In: Dietrich CF, (Herausgeber): Ultrschall-Kurs. Köln: Deutscher Ärzte-Verlag; 2012: 7-50
  • 36 Ignee A, Gebel M, Caspary WF et al. Doppler imaging of hepatic vessels – review. Z Gastroenterol 2002; 40: 21-32
  • 37 Hendrickx P, Roth U. Principles of quantitative color Doppler ultrasound of pelvic and leg arteries. Normal sample. Ultraschall in Med 1994; 15: 296-303
  • 38 Staub D, Canevascini R, Huegli RW et al. Best duplex-sonographic criteria for the assessment of renal artery stenosis – correlation with intra- arterial pressure gradient. Ultraschall in Med 2007; 28: 45-51
  • 39 Arning C, von Reutern GM, Widder B et al. Grading of carotid stenoses: NASCET will become the reference parameter of DEGUM criteria. Nervenarzt 2011; 82: 1036-1037
  • 40 Arning C, Widder B, von Reutern GM et al. Revision of DEGUM ultrasound criteria for grading internal carotid artery stenoses and transfer to NASCET measurement. Ultraschall in Med 2010; 31: 251-257
  • 41 Grant EG, Benson CB, Moneta GL et al. Carotid artery stenosis: gray-scale and Doppler US diagnosis – Society of Radiologists in Ultrasound Consensus Conference. Radiology 2003; 229: 340-346
  • 42 Dietrich CF, Ignee A, Seitz KH et al. Duplex sonography of visceral arteries. Ultraschall in Med 2001; 22: 247-257
  • 43 Sienz M, Ignee A, Dietrich CF. Reference values in abdominal ultrasound – liver and liver vessels. Z Gastroenterol 2010; 48: 1141-1152
  • 44 Sienz M, Ignee A, Dietrich CF. Sonography today: reference values in abdominal ultrasound: aorta, inferior vena cava, kidneys. Z Gastroenterol 2012; 50: 293-315
  • 45 Sienz M, Ignee A, Dietrich CF. Reference values in abdominal ultrasound – biliopancreatic system and spleen. Z Gastroenterol 2011; 49: 845-870
  • 46 Sikdar S, Vaidya S, Dighe M et al. Doppler vibrometry: assessment of arterial stenosis by using perivascular tissue vibrations without lumen visualization. J Vasc Interv Radiol 2009; 20: 1157-1163
  • 47 Sikdar S, Lee JC, Remington J et al. Ultrasonic Doppler vibrometry: novel method for detection of left ventricular wall vibrations caused by poststenotic coronary flow. J Am Soc Echocardiogr 2007; 20: 1386-1392
  • 48 Sorensen MD, Harper JD, Hsi RS et al. B-mode ultrasound versus color Doppler twinkling artifact in detecting kidney stones. J Endourol 2013; 27: 149-153
  • 49 Yu MH, Lee JY, Yoon JH et al. Color Doppler twinkling artifacts from gallbladder adenomyomatosis with 1.8 MHz and 4.0 MHz color Doppler frequencies. Ultrasound Med Biol 2012; 38: 1188-1194
  • 50 Kim HC, Yang DM, Kim SW et al. Color Doppler twinkling artifacts in small-bowel bezoars. J Ultrasound Med 2012; 31: 793-797
  • 51 Kim HC, Yang DM, Jin W et al. Color Doppler twinkling artifacts in various conditions during abdominal and pelvic sonography. J Ultrasound Med 2010; 29: 621-632
  • 52 Gao J, Hentel K, Rubin JM. Correlation between twinkling artifact and color Doppler carrier frequency: preliminary observations in renal calculi. Ultrasound Med Biol 2012; 38: 1534-1539
  • 53 Turrin A, Minola P, Costa F et al. Diagnostic value of colour Doppler twinkling artefact in sites negative for stones on B mode renal sonography. Urol Res 2007; 35: 313-317
  • 54 Lu W, Sapozhnikov OA, Bailey MR et al. Evidence for trapped surface bubbles as the cause for the twinkling artifact in ultrasound imaging. Ultrasound Med Biol 2013; 39: 1026-1038
  • 55 Korkmaz M, Aras B, Sanal B et al. Investigating the clinical significance of twinkling artifacts in patients with urolithiasis smaller than 5 mm. Jpn J Radiol 2014; 32: 482-486
  • 56 Jamzad A, Setarehdan SK. A novel approach for quantification and analysis of the color Doppler twinkling artifact with application in noninvasive surface roughness characterization: an in vitro phantom study. J Ultrasound Med 2014; 33: 597-610
  • 57 Fujii Y, Kino M, Kimata T et al. Significance of twinkling artifact on ultrasound in the diagnosis of cystine urolithiasis. Pediatr Int 2013; 55: e49-e51
  • 58 Ripolles T, Martinez-Perez MJ, Vizuete J et al. Sonographic diagnosis of symptomatic ureteral calculi: usefulness of the twinkling artifact. Abdom Imaging 2013; 38: 863-869
  • 59 Aytac SK, Ozcan H. Effect of color Doppler system on the twinkling sign associated with urinary tract calculi. J Clin Ultrasound 1999; 27: 433-439
  • 60 O'Flynn EA, Sidhu PS. The sonographic twinkling artifact in testicular calcification. J Ultrasound Med 2009; 28: 515-517
  • 61 Kim HJ, Lee JY, Jang JY et al. Color Doppler twinkling artifacts from gallstones: in vitro analysis regarding their compositions and architectures. Ultrasound Med Biol 2010; 36: 2117-2122
  • 62 Tchelepi H, Ralls PW. Color comet-tail artifact: clinical applications. Am J Roentgenol 2009; 192: 11-18
  • 63 Campbell SC, Cullinan JA, Rubens DJ. Slow flow or no flow? Color and power Doppler US pitfalls in the abdomen and pelvis. Radiographics 2004; 24: 497-506
  • 64 Kamaya A, Tuthill T, Rubin JM. Twinkling artifact on color Doppler sonography: dependence on machine parameters and underlying cause. Am J Roentgenol 2003; 180: 215-222
  • 65 Kielar AZ, Shabana W, Vakili M et al. Prospective evaluation of Doppler sonography to detect the twinkling artifact versus unenhanced computed tomography for identifying urinary tract calculi. J Ultrasound Med 2012; 31: 1619-1625
  • 66 Tuma J, Schwarzenbach HR. Ultrasound for renal colic. Praxis (Bern 1994) 2004; 93: 1767-1774
  • 67 Park SJ, Yi BH, Lee HK et al. Evaluation of patients with suspected ureteral calculi using sonography as an initial diagnostic tool: how can we improve diagnostic accuracy?. J Ultrasound Med 2008; 27: 1441-1450
  • 68 Lee JY, Kim SH, Cho JY et al. Color and power Doppler twinkling artifacts from urinary stones: clinical observations and phantom studies. Am J Roentgenol 2001; 176: 1441-1445
  • 69 Rubaltelli L, Khadivi Y, Stramare R et al. Power Doppler signals produced by static structures: a frequent cause of interpretation errors in the study of slow flows. Radiol Med 2000; 99: 161-164
  • 70 Kadappu KK, Thomas L. Tissue Doppler imaging in echocardiography: value and limitations. Heart Lung Circ 2015; 24: 224-233
  • 71 Correale M, Totaro A, Ieva R et al. Tissue Doppler imaging in coronary artery diseases and heart failure. Curr Cardiol Rev 2012; 8: 43-53
  • 72 Fontana A, Zambon A, Cesana F et al. Tissue Doppler, triplane echocardiography, and speckle tracking echocardiography: different ways of measuring longitudinal myocardial velocity and deformation parameters. A comparative clinical study. Echocardiography 2012; 29: 428-437
  • 73 Starritt HC, Duck FA, Humphrey VF. An experimental investigation of streaming in pulsed diagnostic ultrasound beams. Ultrasound Med Biol 1989; 15: 363-373
  • 74 Zauhar G, Starritt HC, Duck FA. Studies of acoustic streaming in biological fluids with an ultrasound Doppler technique. Br J Radiol 1998; 71: 297-302
  • 75 Starritt HC, Hoad CL, Duck FA et al. Measurement of acoustic streaming using magnetic resonance. Ultrasound Med Biol 2000; 26: 321-333
  • 76 Nowicki A, Kowalewski T, Secomski W et al. Estimation of acoustical streaming: theoretical model, Doppler measurements and optical visualisation. Eur J Ultrasound 1998; 7: 73-81
  • 77 Shi X, Martin RW, Vaezy S et al. Quantitative investigation of acoustic streaming in blood. J Acoust Soc Am 2002; 111: 1110-1121
  • 78 Shi X, Martin RW, Vaezy S et al. Color Doppler detection of acoustic streaming in a hematoma model. Ultrasound Med Biol 2001; 27: 1255-1264
  • 79 Nightingale KR, Kornguth PJ, Walker WF et al. A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast. Ultrasound Med Biol 1995; 21: 745-751
  • 80 Nightingale KR, Kornguth PJ, Trahey GE. The use of acoustic streaming in breast lesion diagnosis: a clinical study. Ultrasound Med Biol 1999; 25: 75-87
  • 81 Soo MS, Ghate SV, Baker JA et al. Streaming detection for evaluation of indeterminate sonographic breast masses: a pilot study. Am J Roentgenol 2006; 186: 1335-1341
  • 82 Edwards A, Clarke L, Piessens S et al. Acoustic streaming: a new technique for assessing adnexal cysts. Ultrasound Obstet Gynecol 2003; 22: 74-78
  • 83 Van Holsbeke C, Zhang J, Van Belle V et al. Acoustic streaming cannot discriminate reliably between endometriomas and other types of adnexal lesion: a multicenter study of 633 adnexal masses. Ultrasound Obstet Gynecol 2010; 35: 349-353
  • 84 Tuma J, Jenssen C, Moeller K et al. Ultrasound artifacts and their diagnostic significance in internal medicine and gastroenterology. Part 1: B-mode artifacts. Z Gastroenterol 2015; submitted
  • 85 Gustavson S, Olin JW. Images in vascular medicine. Mirror image artifact. Vasc Med 2006; 11: 175-176
  • 86 Rubin JM, Gao J, Hetel K et al. Duplication images in vascular sonography. J Ultrasound Med 2010; 29: 1385-1390
  • 87 Arning C. Possible errors caused by artefacts in the Doppler color image. Ultraschall in Med 1997; 18: 105-109
  • 88 Arning C. Mirror image artifacts of color Doppler images causing misinterpretation in carotid artery stenoses. J Ultrasound Med 1998; 17: 683-686
  • 89 Reading CC, Charboneau JW, Allison JW et al. Color and spectral Doppler mirror-image artifact of the subclavian artery. Radiology 1990; 174: 41-42
  • 90 Arning C, Eckert B. The diagnostic relevance of colour Doppler artefacts in carotid artery examinations. Eur J Radiol 2004; 51: 246-251