Subscribe to RSS
DOI: 10.1055/s-0042-106958
A randomized controlled cross-over trial and cost analysis comparing endoscopic ultrasound fine needle aspiration and fine needle biopsy[*]
Publication History
submitted 16 July 2015
accepted after revision 16 December 2015
Publication Date:
20 May 2016 (online)
Background and study aims: Techniques to optimize endoscopic ultrasound-guided tissue acquisition (EUS-TA) in a variety of lesion types have not yet been established. The primary aim of this study was to compare the diagnostic yield (DY) of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) to endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) for pancreatic and non-pancreatic masses.
Patients and methods: Consecutive patients referred for EUS-TA underwent randomization to EUS-FNA or EUS-FNB at four tertiary-care medical centers. A maximum of three passes were allowed for the initial method of EUS-TA and patients were crossed over to the other arm based on on-site specimen adequacy.
Results: A total of 140 patients were enrolled. The overall DY was significantly higher with specimens obtained by EUS-FNB compared to EUS-FNA (90.0 % vs. 67.1 %, P = 0.002). While there was no difference in the DY between the two groups for pancreatic masses (FNB: 91.7 % vs. FNA: 78.4 %, P = 0.19), the DY of EUS-FNB was higher than the EUS-FNA for non-pancreatic lesions (88.2 % vs. 54.5 %, P = 0.006). Specimen adequacy was higher for EUS-FNB compared to EUS-FNA for all lesions (P = 0.006). There was a significant rescue effect of crossover from failed FNA to FNB in 27 out of 28 cases (96.5 %, P = 0.0003). Decision analysis showed that the strategy of EUS-FNB was cost saving compared to EUS-FNA over a wide range of cost and outcome probabilities.
Conclusions: Results of this RCT and decision analysis demonstrate superior DY and specimen adequacy for solid mass lesions sampled by EUS-FNB.
* Meeting presentations: Digestive Disease Week, May 2014
-
References
- 1 Early DS, Ben-Menachem T. ASGE Standards of Practice Committee et al. Appropriate use of GI endoscopy. Gastrointest Endosc 2012; 75: 1127-1131
- 2 Dumonceau J-M, Polkowski M, Larghi A et al. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 2011; 43: 897-912
- 3 Wani S, Muthusamy VR, Komanduri S. EUS-guided tissue acquisition: an evidence-based approach (with videos). Gastrointest Endosc 2014; 80: 939-959
- 4 Siddiqui UD, Rossi F, Rosenthal LS et al. EUS-guided FNA of solid pancreatic masses: a prospective, randomized trial comparing 22-gauge and 25-gauge needles. Gastrointest Endosc 2009; 70: 1093-1097
- 5 Camellini L, Carlinfante G, Azzolini F et al. A randomized clinical trial comparing 22 G and 25 G needles in endoscopic ultrasound-guided fine-needle aspiration of solid lesions. Endoscopy 2011; 43: 709-715
- 6 Wani S, Early D, Kunkel J et al. Diagnostic yield of malignancy during EUS-guided FNA of solid lesions with and without a stylet: a prospective, single blind, randomized, controlled trial. Gastrointest Endosc 2012; 76: 328-335
- 7 Lee JK, Choi JH, Lee KH et al. A prospective, comparative trial to optimize sampling techniques in EUS-guided FNA of solid pancreatic masses. Gastrointest Endosc 2013; 77: 745-751
- 8 Bang JY, Ramesh J, Trevino J et al. Objective assessment of an algorithmic approach to EUS-guided FNA and interventions. Gastrointest Endosc 2013; 77: 739-744
- 9 Alsohaibani F, Girgis S, Sandha GS. Does onsite cytotechnology evaluation improve the accuracy of endoscopic ultrasound-guided fine-needle aspiration biopsy?. Can J Gastroenterol 2009; 23: 26-30
- 10 Hébert-Magee S, Bae S, Varadarajulu S et al. The presence of a cytopathologist increases the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration cytology for pancreatic adenocarcinoma: a meta-analysis. Cytopathology 2013; 24: 159-171
- 11 Iglesias-Garcia J, Dominguez-Munoz JE, Abdulkader I et al. Influence of on-site cytopathology evaluation on the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of solid pancreatic masses. Am J Gastroenterol 2011; 106: 1705-1710
- 12 Klapman JB, Logrono R, Dye CE et al. Clinical impact of on-site cytopathology interpretation on endoscopic ultrasound-guided fine needle aspiration. Am J Gastroenterol 2003; 98: 1289-1294
- 13 Wani S, Mullady D, Early DS et al. Clinical impact of immediate on-site cytopathology (CyP) evaluation during endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of pancreatic mass: Interim analysis of a multicenter randomized con- trolled trial. Gastrointest Endosc 2013; 77: 2
- 14 Wiersema MJ, Vilmann P, Giovannini M et al. Endosonography-guided fine-needle aspiration biopsy: diagnostic accuracy and complication assessment. Gastroenterology 1997; 112: 1087-1095
- 15 Ribeiro A, Vazquez-Sequeiros E, Wiersema LM et al. EUS-guided fine-needle aspiration combined with flow cytometry and immunocytochemistry in the diagnosis of lymphoma. Gastrointest Endosc 2001; 53: 485-491
- 16 Erickson RA, Sayage-Rabie L, Beissner RS. Factors predicting the number of EUS-guided fine-needle passes for diagnosis of pancreatic malignancies. Gastrointest Endosc 2000; 51: 184-190
- 17 Levy MJ, Wiersema MJ. EUS-guided Trucut biopsy. Gastrointest Endosc 2005; 62: 417-426
- 18 Jenssen C, Dietrich CF. Endoscopic ultrasound-guided fine-needle aspiration biopsy and trucut biopsy in gastroenterology – An overview. Best Pract Res Clin Gastroenterol 2009; 23: 743-759
- 19 Bang JY, Hebert-Magee S, Trevino J et al. Randomized trial comparing the 22-gauge aspiration and 22-gauge biopsy needles for EUS-guided sampling of solid pancreatic mass lesions. Gastrointest Endosc 2012; 76: 321-327
- 20 Bhutani MS, Gress FG, Giovannini M et al. The No Endosonographic Detection of Tumor (NEST) Study: a case series of pancreatic cancers missed on endoscopic ultrasonography. Endoscopy 2004; 36: 385-389
- 21 Varadarajulu S, Tamhane A, Eloubeidi MA. Yield of EUS-guided FNA of pancreatic masses in the presence or the absence of chronic pancreatitis. Gastrointest Endosc 2005; 62: 728-736
- 22 Gerke H, Rizk MK, Vanderheyden AD et al. Randomized study comparing endoscopic ultrasound-guided Trucut biopsy and fine needle aspiration with high suction. Cytopathology 2010; 21: 44-51
- 23 Iglesias-Garcia J, Poley J-W, Larghi A et al. Feasibility and yield of a new EUS histology needle: results from a multicenter, pooled, cohort study. Gastrointest Endosc 2011; 73: 1189-1196
- 24 Krishnan K, Dalal S, Nayar R et al. Rapid on-site evaluation of endoscopic ultrasound core biopsy specimens has excellent specificity and positive predictive value for gastrointestinal lesions. Dig Dis Sci 2013; 58: 2007-2012
- 25 Schulz KF, Altman DG, Moher D et al. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med 2010; 152: 726-732
- 26 Iwashita T, Nakai Y, Samarasena JB et al. High single-pass diagnostic yield of a new 25-gauge core biopsy needle for EUS-guided FNA biopsy in solid pancreatic lesions. Gastrointest Endosc 2013; 77: 909-915
- 27 Larghi A, Iglesias-Garcia J, Poley J-W et al. Feasibility and yield of a novel 22-gauge histology EUS needle in patients with pancreatic masses: a multicenter prospective cohort study. Surg Endosc 2013; 27: 3733-3738
- 28 Hucl T, Wee E, Anuradha S et al. Feasibility and efficiency of a new 22 G core needle: a prospective comparison study. Endoscopy 2013; 45: 792-798
- 29 Keswani RN, Krishnan K, Wani S et al. Addition of Endoscopic Ultrasound (EUS)-guided fine needle aspiration and on-site cytology to EUS-guided fine needle biopsy increases procedure time but not diagnostic accuracy. Clin Endosc 2014; 47: 242-247
- 30 Madhoun MF, Wani SB, Rastogi A et al. The diagnostic accuracy of 22-gauge and 25-gauge needles in endoscopic ultrasound-guided fine needle aspiration of solid pancreatic lesions: a meta-analysis. Endoscopy 2013; 45: 86-92
- 31 Cleveland P, Gill KRS, Coe SG et al. An evaluation of risk factors for inadequate cytology in EUS-guided FNA of pancreatic tumors and lymph nodes. Gastrointest Endosc 2010; 71: 1194-1199
- 32 Ecka RS, Sharma M. Rapid on-site evaluation of EUS-FNA by cytopathologist: an experience of a tertiary hospital. Diagn Cytopathol 2013; 41: 1075-1080
- 33 Witt BL, Adler DG, Hilden K et al. A comparative needle study: EUS-FNA procedures using the HD ProCore™ and EchoTip® 22-gauge needle types. Diagn Cytopathol 2013; 41: 1069-1074
- 34 Paik WH, Park Y, Park DH et al. Prospective evaluation of new 22 gauge endoscopic ultrasound core needle using capillary sampling with stylet slow-pull technique for intra-abdominal solid masses. J Clin Gastroenterol 2014; 49: 199-205
- 35 Kim GH, Cho YK, Kim EY et al. Comparison of 22-gauge aspiration needle with 22-gauge biopsy needle in endoscopic ultrasonography-guided subepithelial tumor sampling. Scandinavian J Gastro 2014; 49: 347-354
- 36 Nagula S, Pourmand K, Aslanian H et al. EUS-Fine Needle Aspiration (FNA) vs. EUS-Fine Needle Biopsy (FNB) for solid mass lesions: Interim analysis of a large multicenter, randomized clinical trial. DDW. Orlando FL: 2013
- 37 Polkowski M, Larghi A, Weynand B et al. Learning, techniques, and complications of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Technical Guideline. Endoscopy 2012; 44: 190-206
- 38 Varadarajulu S, Hasan MK, Bang JY et al. Endoscopic ultrasound-guided tissue acquisition. Dig Endosc 2014; 26 (Suppl. 01) 62-69
- 39 Eloubeidi MA, Varadarajulu S, Desai S et al. A prospective evaluation of an algorithm incorporating routine preoperative endoscopic ultrasound-guided fine needle aspiration in suspected pancreatic cancer. J Gastrointest Surg 2007; 11: 813-819
- 40 Hewitt MJM, McPhail MJWM, Possamai LL et al. EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest Endosc 2012; 75: 319-3331
- 41 Chen G, Liu S, Zhao Y et al. Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for pancreatic cancer: a meta-analysis. Pancreatology 2013; 13: 298-304
- 42 Puli SR, Bechtold ML, Buxbaum JL et al. How good is endoscopic ultrasound-guided fine-needle aspiration in diagnosing the correct etiology for a solid pancreatic mass? A meta-analysis and systematic review. Pancreas 2013; 42: 20-26
- 43 Strand DS, Jeffus SK, Sauer BG et al. EUS-guided 22-gauge fine-needle aspiration versus core biopsy needle in the evaluation of solid pancreatic neoplasms. Diagn Cytopathol 2014; 42: 751-758
- 44 Vanbiervliet G, Napoléon B, Paul MCS et al. Core needle versus standard needle for endoscopic ultrasound-guided biopsy of solid pancreatic masses: a randomized crossover study. Endoscopy 2014; 46: 1063-1070
- 45 Lee YN, Moon JH, Kim HK et al. Core biopsy needle versus standard aspiration needle for endoscopic ultrasound-guided sampling of solid pancreatic masses: a randomized parallel-group study. Endoscopy 2014; 46: 1056-1062
- 46 Fujii LL, Levy MJ. Pitfalls in EUS FNA. Gastrointest Endosc Clin N Am 2014; 24: 125-142
- 47 LeBlanc JK, Ciaccia D, Al-Assi MT et al. Optimal number of EUS-guided fine needle passes needed to obtain a correct diagnosis. Gastrointest Endosc 2004; 59: 475-481
- 48 Turner BG, Cizginer S, Agarwal D et al. Diagnosis of pancreatic neoplasia with EUS and FNA: a report of accuracy. Gastrointest Endosc 2010; 71: 91-98
- 49 Wani S, Wallace MB, Cohen J et al. Quality indicators for EUS. Am J Gastroenterol 2015; 110: 102-113
- 50 Affolter KE, Schmidt RL, Matynia AP et al. Needle size has only a limited effect on outcomes in EUS-guided fine needle aspiration: a systematic review and meta-analysis. Dig Dis Sci 2013; 58: 1026-1034