Synlett 2002(2): 0325-0327
DOI: 10.1055/s-2002-19752
LETTER
© Georg Thieme Verlag Stuttgart · New York

Application of Directed Metallation in Synthesis, Part 2 [1] : An Expedient Synthesis of Methoxybenzo[b]thiophenes

Chandrani Mukherjee, Asish De*
Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032, India
Fax: +91(33)4732805; e-Mail: ocad@mahendra.iacs.res.in;
Further Information

Publication History

Received 28 November 2001
Publication Date:
02 February 2007 (online)

Abstract

A short, simple and expedient synthesis of substituted benzo[b]thiophenes involving directed ortho lithiation-side-chain deprotonation-cyclisation-reduction is described. This method is a valuable improvement over earlier syntheses of the same class of compounds, both with respect to the number of steps and overall yields.

    References

  • 1 Kamila S. Mukherjee C. De A. Tetrahedron Lett  2001,  42:  5955 
  • 2a Iddon B. Scrowston RM. In Advances in Heterocyclic Chemistry   Vol. 11:  Katritzky AR. Boulton AJ. Academic Press; New York: 1970.  p.178 
  • 2b Scrowston RM. In Advances in Heterocyclic Chemistry   Vol. 29:  Katritzky AR. Boulton AJ. Academic Press; New York: 1980.  p.172 
  • 3a Campaigne E. Knapp DR. Neiss ES. Bosin TR. Adv. in Drug Res.  1970,  5:  1 
  • 3b Bosin TR. Campaigne E. Adv in Drug Res.  1977,  12:  191 
  • 4 Chapmann NB. Clarke K. Iddon B. J Med Chem.  1966,  9:  1899 
  • 5a Jones CD. Suarez T. Ger. Offen  1977,  647:  864 ; Chem Abs. 1977, 87, 102155
  • 5b Akaita T. Araki F. Kurono H. Harada T. Japan Kokai  1976,  118:  835 ; Chem. Abs. 1977, 86, 66846
  • 6a Connor DT. Cetenko WA. Mullicans MD. Sorenson RJ. Unangst PC. Weibert RJ. Adolphson RL. Kennedy JA. Thueson DO. Wright CW. Conroy MC. J. Med. Chem.  1992,  35:  958 
  • 6b Hrib NJ. Jurcak JG. Bregna DE. Dunn RW. Geyer HM. J. Med. Chem  1992,  35:  2712 
  • 6c Boschelli DH. Kramer JB. Khatana SS. Sorenson RJ. Connor DT. Ferin MA. Wright CD. Lesch ME. Imre K. J. Med. Chem.  1995,  38:  4597 
  • 6d Francesco G. Loredana S. Lamartina L. Spinelli D. J. Chem. Soc, Perkin Trans. 1  1995,  1243 
  • 7 Malamas MS. Sredy J. Moxham C. Katz A. Xu W. McDevitt R. Adebayo F. Sawtcki DR. Seestaller L. Sullivan D. Taylor JR. J. Med. Chem.  2000,  43:  1293 
  • 8a Levacher V. Bonsad N. Dupas G. Bourguignon J. Queginer G. Tetrahedron. Lett.  1992,  48:  831 
  • 8b Dutta S. De A. J. Chem. Soc., Perkin Trans 1  1989,  603 
  • 8c Mukherjee S. Jash SS. De A. J. Chem. Res. (S)  1993,  192 
  • 8d Bhattacharya S. De A. Ewing DF. J. Chem. Soc., Perkin Trans 1  1994,  689 
  • 8e Samanta SS. Ghosh SC. De A. J. Chem. Soc., Perkin 1  1997,  3673 
  • 14 Snieckus V. Chem. Rev.  1990,  90:  879 
  • 15 Mills RJ. Taylor NJ. Snieckus V. J. Org. Chem  1989,  54:  4372 
  • 16 We observed exclusive deprotonation in the 2-position of N,N-diethyl-3-methoxy benzamide under standard directed metallation condition although there is a literature report on expected deprotonation in the 2-position along with the formation of 6-lithio derivative as a minor product: Beak P. Brown RA. J. Org. Chem.   1982.  47:  p.32 
  • 17 Court JJ. Hlasta DJ. Tetrahedron Lett.  1996,  37:  1335 
  • 18 Katritzky AR. Serdyuk L. Xie L. J. Chem. Soc., Perkin Trans. 1  1998,  1059 
  • 19 Desvoye ML. Demerseman P. Lechartier JP. Pene C. Cheutin A. Royer R. Bull. Soc. Chim. France  1965,  1473 
  • 20 Rahman LKA. Scrowston RM. J. Chem. Soc., Perkin Trans. 1  1983,  2973 
  • 21 Truce WE. Bannister WW. Knospe RH. J. Org. Chem.  1962,  27:  2821 
9

Kamila, S.; Mondal, S. S.; De, A. unpublished work.

10

All the compounds reported in this paper showed correct elemental analysis and the structures were corroborated by characteristic spectroscopic data.

11

Representative Procedure for Synthesis of Compound 2: Compound 1 (R1 = OMe, R2 = H, R3 = OMe, R4 = H) was added to a stirred mixture of sec- BuLi (1.1 equiv) and TMEDA (1.1 equiv) in THF at -78 °C. After 40 minutes the ortho lithiated species was quenched with dimethyldisulfide (2 equiv) at -78 °C. The reaction mixture was allowed to attain room temperature and was kept at that temperature for 10 hours. Usual aqueous work up afforded compound 2d. Yield: 84%; mp 80 °C (Ether-Petroleum ether); IR (KBr) = 1637.5 cm-1; 1H NMR (300 MHz, CDCl3) δH: 6.4 (d, 1 H, J = 2 Hz), 6.27 (d, 1 H, J = 2 Hz), 3.78 (s, 3 H), 3.76 (s, 3 H), 3.24 (q, 4 H), 2.42 (s, 3 H), 1.13 (t, 6 H); 13C NMR (300MHz, CDCl3) δc: (167.15, 161.18, 157.13, 137.76, 119.75, 104.39, 96.09, 56.04, 55.83, 43.03, 39.14, 16.75, 14.22, 13.01.

12

Representative Procedure for Synthesis of Compound 3: Compound 2d was treated with LDA (2 equiv) in THF at -78 °C for 50 min and the reaction mixture was stirred for 12 h at room temperature. Usual work up of the reaction mixture afforded compound 3d. IR (KBr) = 1679.9 cm-1; 1H NMR (300 MHz, CDCl3) δH: 6.37 (d, 1 H, J = 1.8 Hz), 6.07 (d, 1 H, J = 1.8 Hz), 3.83 (s, 3 H), 3.79 (s, 3 H), 3.68 (s, 2 H); 13C NMR (300 MHz, CDCl3) δc: 196.47, 167.47, 161.85, 160.05, 113.91, 100.2, 96.05, 56.27, 40.12.

13

Representative Procedure for the Synthesis of Compound 4: To a solution of compound 3d in methanol and 10% NaOH (6:1), NaBH4 (2 equiv) in methanol and 10% NaOH solution (10:3) were added. This mixture was refluxed for 1 h on steam bath and then allowed to stand just under boiling condition for 12 h. Methanol was removed and the reaction mixture was acidified with 10% H2SO4 and extracted with ether. Usual aqueous work up and removal of solvent afforded compound 4d. 1H NMR (300 MHz, CDCl3) δH: 7.28 (d, 1 H, J = 5.49 Hz), 7.05 (d, 5.49), 6.82 (d, 1 H, J = 1.8 Hz), 6.31 (d, 1 H, J = 1.8), 3.81 (s, 3 H), 3.75 (s, 3 H); 13C NMR (300 MHz, CDCl3) δc: 159.23, 155.78, 142.5, 125.41, 122.25, 120.61, 96.62, 96.21, 56.06, 55.83.