Subscribe to RSS
DOI: 10.1055/s-2002-25365
Nucleophilic Napththalene Dearomatization of N-Alkyl-N-benzyl(dinaphthyl)phosphinamides. Application to the Synthesis of γ-(N-Alkylamino)(dihydronaphthalenyl)phosphinic Acids
Publication History
Publication Date:
07 February 2007 (online)
Abstract
Lithiation of N-alkyl-N-benzyl(dinaphthyl)phosphinamides with s-BuLi at -90 ºC in THF promoted the dearomatization of one naphthalene ring through anionic cyclization. The intermediate lithium compounds were trapped with MeOH, MeI and allyl bromide affording benzo[e]-1-phosphaisoindoles with excellent stereoselectivities. Acid hydrolysis of the P-N linkage allowed to obtain γ-(N-alkylamino)phosphinic acids containing a dihydronaphthalene system. This structural fragment proved to be an element of conformational restriction.
Key words
phosphinamides - dearomatization - stereoselective synthesis - phosphorus amino acids - phosphorus heterocycles
-
1a
Robichaud AJ.Meyers AI. J. Org. Chem. 1991, 56: 2607 -
1b
Hulme AN.Henry SS.Meyers AI. J. Org. Chem. 1995, 60: 1265 -
2a
Ahmed A.Bragg RA.Clayden J.Tchabanenko K. Tetrahedron Lett. 2001, 42: 3407 -
2b
Bragg RA.Clayden J.Bladon M.Ichihara O. Tetrahedron Lett. 2001, 42: 3411 - For some recent references see:
-
3a
James B.Meyers AI. Tetrahedron Lett. 1998, 39: 5301 -
3b
Shindo M.Koga K.Tomioka K. J. Org. Chem. 1998, 63: 9351 -
3c
Saito S.Sone T.Shimada K.Yamamoto H. Synlett 1999, 81 -
3d
Shindo M.Koga K.Asano Y.Tomioka K. Tetrahedron 1999, 55: 4955 -
3e
Kolotuchin SV.Meyers AI. J. Org. Chem. 2000, 65: 3018 -
3f
Saito S.Sone T.Murase M.Yamamoto H. J. Am. Chem. Soc. 2000, 122: 10216 -
3g
Tomioka K.Shioya Y.Nagaoka Y.Yamada KI. J. Org. Chem. 2001, 66: 7051 -
4a
Padwa A.Filipkowski MA.Kline DN.Murphree S.Yeske PE. J. Org. Chem. 1993, 58: 2061 -
4b
Ahmed A.Clayden J.Rowley M. Chem. Commun. 1998, 297 -
4c
Ahmed A.Clayden J.Rowley M. Synlett 1999, 1954 -
4d
Aggarwal VK.Ferrara M. Org. Lett. 2000, 2: 4107 -
4e
Clayden J.Menet CJ.Mansfield DJ. Org. Lett. 2000, 2: 4229 -
4f
Clayden J.Tchabanenko K.Yasin SA.Turnbull MD. Synlett 2001, 302 - 5
Fernández I.López-Ortiz F.Tejerina B.García-Granda S. Org. Lett. 2001, 3: 1339 -
6a
Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity
Kukhar VP.Hudson HR. John Wiley; New York: 2000. -
6b
Chebib M.Johnston GAR. J. Med. Chem. 2000, 43: 1427 -
7a
Compound 6a,b have been previously synthesized through the reaction of PCl3 with the corresponding benzylamine. No yields were given. Our modification afforded the desired product quantitatively. The 1H and 31P NMR spectra of the crude products indicated a purity higher than 97%. Therefore, the compounds were used without additional purification by distillation.
-
7b For 6a (bp 165 ºC/0.15 Torr) see:
Imbery D.Friebolin H. Z. Naturforsch. B 1968, 23: 759 -
7c For 6b (δ (31P, 30% CHCl3) = 138.1 ppm) see:
Gouesnard JP.Dorie J.Martin GJ. Can. J. Chem. 1980, 58: 1295 -
11a
Mann FG.Watson J. J. Org. Chem. 1948, 13: 502 -
11b
Imamoto T.Kikuchi S.-I.Miura T.Wada Y. Org. Lett. 2001, 3: 87 - 12
Myers AG.Gleason JL.Yoon T.Kung DW. J. Am. Chem. Soc. 1997, 119: 656 - 13
Woll MG.Lai JR.Guzei IA.Taylor SJC.Smith MEB.Gellman SH. J. Am. Chem. Soc. 2001, 123: 11077
References
The structural analysis included 1D (1H, 13C, 31P, DEPT, selective TOCSY) and 2D (gHMQC, gHMBC and gNOESY) NMR experiments.
9s-BuLi (1.2 mL of a 1.3 M solution in cyclohexane, 1.56 × 10-3 mol) was added to a stirred solution of 9a (6.23 × 10-4 mol) in THF (30 mL) at -90 ºC. After 30 min of metallation MeOH (1.87 × 10-2 mol) was added and the reaction was stirred at -90 ºC for 20 min. Then the reaction mixture was poured into ice water and extracted with ethyl acetate (3 × 15 mL). The organic layers were dried over Na2SO4 and concentrated in vacuo. 1H, 1H{31P}, and 31P NMR spectra of the crude were measured in order to determine the stereoselectivity of the process. Precipitation from diethyl ether afforded 10a as a white solid, mp 201-203 ºC. IR (KBr): νmax = 1159 cm-1. 1H NMR (300.13 MHz, CDCl3): δ = 2.69 (d, 3 J PH = 7.8 Hz, 3 H), 3.78 (dddt, 3 J HH = 2.5, 3 J HH = 7.1 Hz, 3 J HH = 18.3, 3 J PH = 4.6 Hz, 1 H), 3.94 (dd, 3 J HH = 18.3, 2 J PH = 22.1 Hz, 1 H), 4.77 (dd, 3 J HH = 7.1, 3 J PH = 13.3 Hz, 1 H), 5.83 (dt, 3 J HH = 9.7, 3 J HH = 2.5, 4 J PH = 2.5 Hz, 1 H), 6.24 (dd, 3 J HH = 9.7, 4 J HH = 2.5 Hz, 1 H), 6.72 (dt, 3 J HH = 7.5, 4 J HH = 1.7 Hz, 1 H), 6.89 (dt, 3 J HH = 7.5, 4 J HH = 5 J PH = 1.7 Hz, 1 H), 6.96 (t, 3 J HH = 7.5 Hz, 1 H), 7.35 (d, 3 J HH = 7.5 Hz, 1 H), 7.40 (dt, 3 J HH = 7.1, 4 J HH = 1.7 Hz, 1 H), 7.47 (dd, 3 J HH = 7.9, 4 J PH = 2.7 Hz, 1 H), 7.50 (t, 3 J HH = 7.1 Hz, 2 H), 7.61 (ddd, 3 J HH = 8.1, 3 J HH = 6.9, 4 J HH = 1.2 Hz, 1 H), 7.66 (dd, 3 J HH = 7.1, 4 J HH = 1.7 Hz, 2 H), 7.78 (ddd, 3 J HH = 8.6 Hz, 3 J HH = 6.9, 4 J HH = 1.7 Hz, 1 H), 7.87 (ddd, 3 J HH = 7.1, 4 J HH = 1.4, 3 J PH = 15.7 Hz, 1 H), 7.91 (dd, 3 J HH = 8.2, 4 J HH = 1.7 Hz, 1 H), 8.01 (d, 3 J HH = 7.9 Hz, 1 H), 9.79 (d, 3 J HH = 8.6 Hz, 1 H) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 29.54 (d, 2 J PC = 3.9 Hz, CH3), 42.39 (d, 2 J PC = 4.8 Hz, CH), 43.31 (d, 1 J PC = 92.8 Hz, CH), 66.60 (d, 2 J PC = 8.7 Hz, CH), 124.38 (d, 3 J PC = 14.1 Hz, CH), 126.41 (CH), 126.57 (d, 3 J PC = 21.3 Hz, C), 126.68 (CH), 126.80 (d, 1 J CP = 99.1 Hz, C), 126.84 (d, 3 J PC = 6.0 Hz, CH), 127.04 (CH), 127.16 (CH), 127.33 (CH), 127.56 (CH), 127.80 (CH), 127.98 (CH), 128.13 (2 CH), 128.84 (3 CH), 129.15 (CH), 130.22 (C), 133.67 (d, 4 J PC = 3.3 Hz, CH), 134.01 (d, 2 J PC = 9.0 Hz, C), 134.18 (d, 2 J PC = 10.5 Hz, CH), 135.62 (d, 3 J PC = 11.1 Hz, C), 137.54 (C) ppm. 31P NMR (121.50 MHz, CDCl3): δ = 45.74 ppm. Anal. Calcd for C28H24NOP: C, 79.82; H, 5.70; N, 3.32. Found: C, 79.83; H, 5.72; N, 3.31. MS (API-ES): m/z = 422 (M+1).
10The preference for the trans junction may be explained through the coordination of the lithium cation with the oxygen atoms of the methanol and the P-O linkage from the same face of the thicyclic system.