Plant Biol (Stuttg) 2002; 4(6): 671-681
DOI: 10.1055/s-2002-37408
Original Paper
Georg Thieme Verlag Stuttgart ·New York

High-Resolution Chlorophyll Fluorescence Imaging Serves as a Non-Invasive Indicator to Monitor the Spatio-Temporal Variations of Metabolism during the Day-Night Cycle and during the Endogenous Rhythm in Continuous Light in the CAM Plant Kalanchoë daigremontiana

U. Rascher 1,2 , U. Lüttge 1
  • 1 Institute of Botany, Darmstadt University of Technology, Schnittspahnstr. 3 - 5, 64287 Darmstadt, Germany
  • 2 Biosphere 2 Center, Columbia University, Oracle, AZ 85623, USA
Further Information

Publication History

Received: September 6, 2002

Accepted: December 18, 2002

Publication Date:
24 February 2003 (online)

Abstract

Chlorophyll fluorescence imaging is a powerful tool to monitor temporal and spatial dynamics of photosynthesis and photosynthesis-related metabolism. In this communication, we use high resolution chlorophyll fluorescence imaging techniques under strictly controlled conditions to quantify day courses of relative effective quantum yield (φPSII) of an entire leaf of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana at different light intensities. Careful interpretation of the combined gas exchange and fluorescence data, in combination with micro malate samples, allow the interpretation of underlying metabolic properties, such as leaf internal CO2 concentration (ciCO2 ) and energy demand of the cells. Spatial variations of φPSII, which occur as running wave fronts at the transition from phase III to phase IV of CAM, may reflect spatial differences of ciCO2 , which are preserved in the tightly packed mesophyll cells of K. daigremontiana. An endogenous rhythm is driven by a master switch which mediates between malate storage and malate release to and from the vacuole, however, using fluorescence techniques, four different metabolic states can be distinguished which also account for the activity of phosphoenolpyruvate carboxylase.

Symbols and Abbreviations

φPSII: relative quantum efficiency of photosystem II

∫φPSII: relative quantum efficiency of photosystem II integrated over one leaf

ΔF/Fm′: effective quantum yield of PS II (ΔF = Fm′ - F)

CAM: crassulacean acid metabolism

ciCO2 : leaf internal CO2 concentration

HIGH: maximum fluorescence yield of the light-adapted leaf at the end of a saturating light pulse

LOW: ground fluorescence yield of the light-adapted leaf under low, steady state light intensities

PEPCase: phosphoenolpyruvate carboxylase

PFD: photon flux density (λ = 400 - 700 nm)

PS: photosystem

Rubisco: ribulose-1,5-bisphosphate carboxylase-oxygenase

References

  • 01 Baker,  N. R.,, Oxborough,  K.,, Lawson,  T.,, and Morison,  J. I. L.. (2001);  High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves.  J. Exp. Bot.. 52 615-621
  • 02 Beck,  F.,, Blasius,  B.,, Lüttge,  U.,, Neff,  R.,, and Rascher,  U.. (2001);  Stochastic noise interferes coherently with a model biological clock and produces specific dynamic behaviour.  Proc. R. Soc. Lond. B Biol. Sci.. 268 1307-1313
  • 03 Blasius,  B.,, Beck,  F.,, and Lüttge,  U.. (1998);  Oscillatory model of crassulacean acid metabolism: structural analysis and stability boundaries with a discrete hysteresis switch.  Plant Cell Environ.. 21 775-784
  • 04 Blasius,  B.,, Neff,  R.,, Beck,  F.,, and Lüttge,  U.. (1999);  Oscillatory model of crassulacean acid metabolism with a dynamic hysteresis switch.  Proc. R. Soc. Lond. B Biol. Sci.. 266 93-101
  • 05 Bohn,  A.,, Geist,  A.,, Rascher,  U.,, and Lüttge,  U.. (2001);  Responses to different external light rhythms by the circadian rhythm of Crassulacean acid metabolism in Kalanchoë daigremontiana. .  Plant Cell Environ.. 24 811-820
  • 06 Borland,  A.,, Hartwell,  J.,, Jenkins,  G. I.,, Wilkins,  M. B.,, and Nimmo,  H. G.. (1999);  Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism.  Plant Physiol.. 121 889-896
  • 07 Bradbury,  M., and Baker,  N. R.. (1981);  Analysis of the slow phase of the chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystem I and II.  Biochim. Biophys. Acta. 635 542-551
  • 08 Buchanan-Bollig,  I. C.,, Fischer,  A.,, and Kluge,  M.. (1984);  Circadian rhythms in Kalanchoë: the pathway of 14CO2 fixation during prolonged light.  Planta. 161 71-80
  • 09 Chaerle,  L., and Van der Straeten,  D.. (2001);  Seeing is believing: imaging techniques to monitor plant health.  Biochem. Biophys. Acta. 1519 153-166
  • 10 Chollet,  R.,, Vidal,  J.,, and O'Leary,  M. H.. (1996);  Phosphoenolpyruvate carboxylase, a ubiquitous, highly regulated enzyme in plants.  Annu. Rev. Plant Physiol. Plant Mol. Biol.. 47 273-298
  • 11 Daley,  P. F.,, Raschke,  K.,, Ball,  J. T.,, and Berry,  J. A.. (1989);  Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence.  Plant Physiol.. 90 1233-1238
  • 12 de Saussure,  T.. (1804) Recherches chimiques sur la végetation. Paris; Chez la V.e Nyon
  • 13 Farquhar,  G. D., and Sharkey,  T. D.. (1982);  Stomatal conductance and photosynthesis.  Annu. Rev. Plant Phys.. 33 317-345
  • 14 Genty,  B.,, Briantais,  J.-M.,, and Baker,  N. R.. (1989);  The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.  Biochim. Biophys. Acta. 990 87-92
  • 15 Grams,  T. E. E.,, Borland,  A. M.,, Roberts,  A.,, Griffiths,  H.,, Beck,  F.,, and Lüttge,  U.. (1997);  On the mechanism of reinitiation of endogenous crassulacean acid metabolism rhythm by temperature changes.  Plant Physiol.. 113 1309-1317
  • 16 Heyne,  B.. (1815);  On the deoxidation of the leaves of Cotyledon calycina. .  Trans. Linn. Soc. Lond.. 11 213-215
  • 17 Hütt,  M.-Th., and Neff,  R.. (2001);  Quantification of spatiotemporal phenomena by means of cellular automata techniques.  Physica A. 289 498-516
  • 18 Hütt,  M.-Th., Neff,  R.,, Busch,  H.,, and Kaiser,  F.. (2002);  A method for detecting the signature of spatiotemporal stochastic resonance.  Phys. Rev. E. 66 026117
  • 19 Kluge,  M.. (1969);  Veränderliche Markierungsmuster bei 14CO2-Fütterung von Bryophyllum tubiflorum zu verschiedenen Zeitpunkten der Hell/Dunkelperiode.  Planta. 88 113-129
  • 20 Kluge,  M.,, Brulfert,  J.,, and Queiroz,  O.. (1981);  Diurnal changes in the regulatory properties of PEP-carboxylase in Crassulacean Acid Metabolism (CAM).  Plant Cell Environ.. 4 251-256
  • 21 Kluge,  M., and Ting,  I. P.. (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Berlin, Heidelberg, New York; Springer Verlag
  • 22 Lichtenthaler,  K. K.,, Lang,  M.,, Sowinska,  M.,, Heisel,  F.,, and Miehé,  J. A.. (1996);  Detection of vegetation stress via a new high resolution fluorescence imaging system.  J. Plant Physiol.. 148 599-612
  • 23 Lüttge,  U.. (2000);  The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism (CAM).  Planta. 211 761-769
  • 24 Lüttge,  U.. (2002);  CO2-concentrating: consequences in crassulacean acid metabolism.  J. Exp. Bot.. 53 2131-2142
  • 25 Lüttge,  U., and Ball,  E.. (1978);  Free running oscillations of transpiration and CO2 exchange in CAM plants without a concomitant rhythm of malate levels.  Z. Pflanzenphysiol.. 90 69-77
  • 26 Lüttge,  U., and Beck,  F.. (1992);  Endogenous rhythm and chaos in crassulacean acid metabolism.  Planta. 188 28-38
  • 27 Maddes,  T.,, Rascher,  U.,, Siebke,  K.,, Lüttge,  U.,, and Osmond,  B.. (2002);  Spatio-temporal variations in chlorophyll fluorescence during the phases of CAM, and during endogenous rhythms in continuous light, in thick leaves of Kalanchoë daigremontiana. .  Plant Biol.. 4 446-455
  • 28 Marshall,  B., and Biscoe,  P. V.. (1980);  A model for C-3 leaves describing the dependence of net photosynthesis on irradiance: I-Derivation.  J. Exp. Bot.. 31 29-39
  • 29 Maxwell,  K.,, von Caemmerer,  S.,, and Evans,  J. R.. (1997);  Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism?.  Aust. J. Plant Physiol.. 24 777-786
  • 30 Meyer,  S., and Genty,  B.. (1998);  Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging.  Plant Physiol.. 116 947-957
  • 31 Nedbal,  L.,, Soukupová,  J.,, Kaftan,  D.,, Whitmarsh,  J.,, and Trtílek,  M.. (2000);  Kinetic imaging of chlorophyll fluorescence using modulated light.  Photosynth. Res.. 66 3-12
  • 32 Nimmo,  H.. (1998);  Circadian regulation of a plant protein kinase.  Chronobiol. Intern.. 15 109-118
  • 33 Nimmo,  H.. (2000);  The regulation of phosphoenolpyruvate carboxylase in CAM plants.  Trends Plant Sci.. 5 75-80
  • 34 Osmond,  C. B.. (1978);  Crassulacean acid metabolism: a curiosity in context.  Annu. Rev. Plant Physiol.. 29 379-414
  • 35 Osmond,  C. B.,, Maxwell,  K.,, Popp,  M.,, and Robinson,  S.. (1999) On being thick: fathoming apparently futile pathways of photosynthesis and carbohydrate metabolism in succulent CAM plants. Plant carbohydrate biochemistry. Bryant J. A., Burrell M. M., and Kruger N. J., eds. Oxford, Washington DC; BIOS Scientific Pub. pp. 183-200
  • 36 Paillotin,  P.. (1976);  Movement of excitations in the photosynthesis domain of photosystem II.  J. theor. Biol.. 58 237-252
  • 37 Rascher,  U.. (2001) Der endogene CAM-Rhythmus von Kalanchoë daigremontiana als nichtlineares Modellsystem zum Verständnis der raum-zeitlichen Dynamik einer biologischen Uhr. Osnabrück, Germany; Der Andere Verlag, and PhD thesis, Institute of Botany, Darmstadt University of Technology
  • 38 Rascher,  U.,, Blasius,  B.,, Beck,  F.,, and Lüttge,  U.. (1998);  Temperature profiles for the expression of endogenous rhythmicity and arrhythmicity of CO2 exchange in the CAM plant Kalanchoë daigremontiana can be shifted by slow temperature changes.  Planta. 207 76-82
  • 39 Rascher,  U.,, Hütt,  M.-Th.,, Siebke,  K.,, Osmond,  C. B.,, Beck,  F.,, and Lüttge,  U.. (2001);  Spatio-temporal variations of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators.  Proc. Natl. Acad. Sci. USA. 98 11801-11805
  • 40 Schreiber,  U., and Bilger,  W.. (1993);  Progress in chlorophyll fluorescence research: major developments during the past years in retrospect.  Proc. Bot.. 53 151-173
  • 41 Schreiber,  U.,, Bilger,  W.,, and Neubauer,  C.. (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecological studies, Vol. 100. Berlin, Heidelberg, New-York; Springer Verlag pp. 49-70
  • 42 Siebke,  K., and Weis,  E.. (1995 a);  Assimilation images of leaves of Glechoma hederacea: analysis of non-synchronous stomata related oscillations.  Planta. 196 155-165
  • 43 Siebke,  K., and Weis,  E.. (1995 b);  Images of chlorophyll-a-fluorescence in leaves: topography of photosynthetic oscillations in leaves of Glechoma hederacea. .  Photosynth. Res.. 45 225-237
  • 44 Smith,  J. A. C., and Heuer,  S.. (1981);  Determination of the volume of intercellular spaces in leaves and some values for CAM plants.  Ann. Bot.. 48 915-917
  • 45 Spalding,  M. H.,, Stumpf,  D. K.,, Ku,  M. S. B.,, Burris,  R. H.,, and Edwards,  G. E.. (1979);  Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum DC.  Austr. J. Plant Physiol.. 6 557-567
  • 46 Terashima,  I., and Hikosaka,  K.. (1995);  Comparative ecophysiology of leaf and canopy photosynthesis.  Plant Cell Environ.. 18 1111-1128
  • 47 Thornley,  J. H. M.. (1976) Photosynthesis. Mathematical models in plant physiology, chap. 4. Sutcliffe J. F. and Mahlberg P., eds. London; Academic Press
  • 48 Vidal,  L., and Chollet,  R.. (1997);  Regulatory phosphorylation of C4 PEP carboxylase.  Trends Plant Sci.. 2 230-237
  • 49 Vogelmann,  T. C., and Han,  T.. (2000);  Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles.  Plant Cell Environ.. 23 1303-1311
  • 50 Warren,  D. M., and Wilkins,  M. B.. (1961);  An endogenous rhythm in the rate of dark fixation of carbon dioxide in leaves of Bryophyllum fedtschenkoi. .  Nature. 191 686-688
  • 51 Winfree,  T. A., ed.. (1989) When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton; Princeton Univ. Press
  • 52 Winter,  K., and Smith,  J. A. C., eds.. (1996) Crassulacean acid metabolism. Ecological studies, Vol. 114. Berlin, Heidelberg, New-York; Springer Verlag

U. Rascher

Biosphere 2 Center
Columbia University

P.O. Box 689
Oracle
AZ 85623
USA

Email: urascher@bio2.columbia.edu

Section Editor: H. Rennenberg