References
1a
Dyke SF.
Quessy SN. In The Alkaloids
Vol. 18:
Rodrigo RGA.
Academic Press;
New York:
1981.
p.1
1b
Tsuda Y.
Sano T. In The Alkaloids
Vol. 48:
Cordell GA.
Academic Press;
San Diego:
1996.
p.249
For recent synthetic studies, see:
2a
Fukumoto H.
Esumi T.
Ishihara J.
Hatakeyama S.
Tetrahedron Lett.
2003,
44:
8047
2b
Shimizu K.
Takimoto M.
Mori M.
Org. Lett.
2003,
5:
2323
2c
Gill C.
Greenhalgh DA.
Simpkins NS.
Tetrahedron Lett.
2003,
44:
7803
2d
Chikaoka S.
Toyao A.
Ogasawara M.
Tamura O.
Ishibashi H.
J. Org. Chem.
2003,
68:
312
2e
Miranda LD.
Zard SZ.
Org. Lett.
2002,
4:
1135
2f
Allin SM.
James SL.
Elsegood MRJ.
Martin WP.
J. Org. Chem.
2002,
67:
9464
2g
Padwa A.
Waterson AG.
J. Org. Chem.
2000,
65:
235
2h
Hosoi S.
Nagao M.
Tsuda Y.
Isobe K.
Sano T.
Ohta T.
J. Chem. Soc., Perkin Trans. 1
2000,
1505
2i For asymmetric synthesis of erythrinan alkaloid, see: Sano T.
Kamiko M.
Toda J.
Hosoi S.
Tsuda Y.
Chem. Pharm. Bull.
1994,
42:
1375
2j
Tsuda Y.
Hosoi S.
Isida K.
Sangai M.
Chem. Pharm. Bull.
1994,
42:
204
2k
Tsuda Y.
Hosoi S.
Katagiri N.
Kaneko C.
Sano T.
Chem. Pharm. Bull.
1993,
41:
2087
3 Throughout this work, the commonly accepted erythrinan numbering is used. See: Boekelheide V.
Prelog V. In Progress in Organic Chemistry
Vol. 3:
Cook JW.
Butterworths Scientific;
London:
1955.
Chap. 5. see also ref. 1
4
Yasui Y.
Koga Y.
Suzuki K.
Matsumoto T.
Synlett
2004, DOI: 10.1055/s-2004-817753
For reviews, see:
5a
Bringmann G.
Breuning M.
Tasler S.
Synthesis
1999,
525
5b
Gant TG.
Meyers AI.
Tetrahedron
1994,
50:
2297
5c For recent examples, see: Broutin P.-E.
Colobert F.
Org. Lett.
2003,
5:
3281
5d
Baudoin O.
Décor A.
Cesario M.
Guéritte F.
Synlett
2003,
2009
5e See also: Anderson JC.
Cran JW.
King NP.
Tetrahedron Lett.
2003,
44:
7771
5f
Kamikawa K.
Sakamoto T.
Tanaka Y.
Uemura M.
J. Org. Chem.
2003,
68:
9356
5g
Matsumoto T.
Konegawa T.
Nakamura T.
Suzuki K.
Synlett
2002,
122
5h
Shimada T.
Cho Y.-H.
Hayashi T.
J. Am. Chem. Soc.
2002,
124:
13396
6 All new compounds were fully characterized by 1 H and 13 C NMR, IR and combustion analysis. Data for the selected compounds follow. [*The specific rotation is shown for (+)-6 and for each isomer derived from (+)-6 . See ref. 9 and ref. 14] Compound 6 : [α]D
28 +20.5 (c 1.12, CHCl3 )*. 1 H NMR (CDCl3 ): δ = 7.46-7.36 (m, 5 H), 6.97 (s, 1 H), 6.86 (s, 1 H), 6.54 (s, 1 H), 6.01 (s, 1 H), 5.15 (s, 2 H), 3.93 (s, 3 H), 3.82 (s, 3 H), 3.73-3.55 (m, 4 H), 2.60-2.45 (m, 4 H), 1.35 (br, 1 H), 0.97 (s, 21 H). 13 C NMR (CDCl3 ): δ = 148.4, 147.3, 145.2, 141.8, 135.9, 134.2, 131.8, 130.0, 128.8, 128.5, 128.4, 127.9, 113.5, 113.2, 112.4, 111.5, 71.4, 63.8, 62.6, 55.8, 55.7, 37.6, 36.2, 17.9, 11.8. IR (NaCl): 3515, 2940, 2865, 1605, 1515, 1490, 1465, 1255, 1215, 1165, 1110, 1045, 755 cm-1 . Anal. Calcd for C34 H47 BrO6 Si: C, 61.90; H, 7.18. Found: C, 61.98; H, 7.45. HPLC (Daicel CHIRAL-PAK AD-H, φ0.46 × 250 mm × 2, hexane:i -PrOH = 85:15, 1.0 mL/min) retention time: 10.9 min for (+)-6 , 12.8 min for (-)-6 . Compound 9 : Colorless needles (hexane), mp 194.0-194.5 °C; [α]D
24 +16 (c 1.1, CHCl3 )*. 1 H NMR (CDCl3 ): δ = 6.95 (s, 1 H), 6.78 (s, 1 H), 6.55 (s, 1 H), 5.48 (s, 1 H), 4.45 (s, 1 H), 3.92 (s, 3 H), 3.82 (s, 3 H), 3.81 (s, 3 H), 3.60 (t, 2 H, J = 6.8 Hz), 3.30-3.18 (m, 2 H), 2.50-2.39 (m, 3 H), 2.34 (ddd, 1 H, J
1 = J
2 = 6.8 Hz, J
3 = 13.2 Hz), 1.42 (s, 9 H), 0.95 (s, 21 H), -0.1 (s, 9 H). 13 C NMR (CDCl3 ): δ = 155.8, 151.1, 148.2, 147.1, 146.6, 138.5, 134.1, 133.5, 132.0, 129.5, 119.1, 114.3, 111.4, 79.2, 64.1, 61.3, 55.9, 55.7, 40.1, 36.9, 33.1, 28.4, 17.9, 11.9, 1.7. IR (KBr): 3325, 2940, 2865, 1685, 1515, 1465, 1245, 1170, 1110, 880 cm-1 . Anal. Calcd for C36 H61 NO7 Si2 : C, 63.96; H, 9.09; N, 2.07. Found: C, 64.26; H, 9.38; N, 2.06. HPLC (Daicel CHIRALCEL OD-H, φ0.46 × 250 mm × 2, hexane:i -PrOH = 98:2, 1.0 mL/min) retention time: 20.5 min for (+)-9 , 25.6 min for (-)-9 . Compound 10 : [α]D
24 -24 (c 0.99, CHCl3 )*. 1 H NMR (CDCl3 ): δ = 6.81 (s, 1 H), 6.61 (s, 1 H), 6.10 (s, 1 H), 4.59 (br, 1 H), 3.92 (s, 3 H), 3.85 (s, 3 H), 3.72-3.61 (m, 2 H), 3.42-3.33 (m, 2 H), 3.35 (s, 3 H), 3.24 (s, 3 H), 2.61 (t, 2 H, J = 7.7 Hz), 2.16 (ddd, 1 H, J
1 = J
2 = 7.2 Hz, J
3 = 14.5 Hz), 2.03 (ddd, 1 H, J
1 = J
2 = 5.6 Hz, J
3 = 14.5 Hz), 1.43 (s, 9 H), 0.99 (s, 21 H), -0.11 (s, 9 H). 13 C NMR (CDCl3 ): δ = 196.7, 155.7, 153.9, 153.2, 148.8, 148.3, 146.8, 130.1, 129.3, 125.2, 113.3, 111.3, 94.5, 79.3, 61.3, 55.9, 55.8, 50.3, 50.2, 39.8, 37.4, 33.2, 28.3, 17.9, 11.8, 1.6. IR (NaCl): 3385, 2945, 2865, 1715, 1665, 1510, 1465, 1250, 1165, 1090, 1070 cm-1 . Anal. Calcd for C37 H63 NO8 Si2 : C, 62.94; H, 8.99; N, 1.98. Found: C, 62.65; H, 9.18; N, 1.94. HPLC (Daicel CHIRALCEL OD-H, φ0.46 × 250 mm, hexane:i -PrOH = 98:2, 1.0 mL/min) retention time: 7.4 min for (-)-10 , 12.6 min for (+)-10 . Compound 11 : [α]D
27 +52.0 (c 1.73, CHCl3 )*. 1 H NMR (CDCl3 ): δ = 6.56 (s, 1 H), 6.49 (s, 1 H), 6.05 (s, 1 H), 4.15 (ddd, 1 H, J
1 = J
2 = 5.1 Hz, J
3 = 13.2 Hz), 3.85 (s, 6 H), 3.76 (ddd, 1 H, J
1 = 5.1 Hz, J
2 = 8.9 Hz, J
3 = 13.2 Hz), 3.66 (s, 3 H), 3.63 (ddd, 1 H, J
1 = 6.2 Hz, J
2 = 8.1 Hz, J
3 = 9.7 Hz), 3.49 (ddd, 1 H, J
1 = 6.2 Hz, J
2 = 8.1 Hz, J
3 = 9.7 Hz), 3.03 (ddd, 1 H, J
1 = 5.1 Hz, J
2 = 8.9 Hz, J
3 = 16.1 Hz), 2.93 (ddd, 1 H, J
1 = J
2 = 5.1 Hz, J
3 = 16.1 Hz), 2.31 (ddd, 1 H, J
1 = J
2 = 6.2 Hz, J
3 = 12.3 Hz), 2.11 (ddd, 1 H, J
1 = J
2 = 8.1 Hz, J
3 = 12.3 Hz), 1.37 (s, 9 H), 0.94 (s, 21 H), 0.0 (s, 9 H). 13 C NMR (CDCl3 ): δ = 181.6, 167.4, 157.1, 154.9, 148.7, 148.5, 147.7, 126.3, 124.3, 123.5, 111.0, 109.8, 81.1, 66.3, 61.3, 59.8, 55.8, 55.7, 40.1, 34.7, 28.3, 27.9, 17.9, 11.7, 1.4. IR (NaCl): 2940, 2865, 1695, 1660, 1515, 1365, 1260, 1225, 1165, 1090, 860 cm-1 . Anal. Calcd for C36 H59 NO7 Si2 : C, 64.15; H, 8.82; N, 2.08. Found: C, 64.01; H, 9.02; N, 1.93. HPLC (Daicel CHIRAL-CEL OD-H, φ0.46 × 250 mm, hexane:i -PrOH = 99:1, 0.5 mL/min) retention time: 14.3 min for (+)-11 , 17.1 min for (-)-11 . Compound 1 : Pale yellow needles (CHCl3 ), mp 90.5-91.0 °C; [α]D
24 +46 (c 0.86, CHCl3 )*. HPLC (Daicel CHIRALPAK AD-H, φ0.46 × 250 mm, hexane:i -PrOH = 80:20, 1.0 mL/min) retention time: 31.6 min for (+)-1 , 25.3 min for (-)-1 .
7a
Miyaura N.
Yanagi T.
Suzuki A.
Synth. Commun.
1981,
11:
513
7b
Watanabe T.
Miyaura N.
Suzuki A.
Synlett
1992,
207
7c For a review, see: Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
8 Attempts to remove the MOM group from alcohol 4 led to concomitant desilylation.
9 We converted both isomers of 6 to O -methyleryso-dienone(1 ). The absolute configuration of each intermediate was not determined. In Scheme
[2 ]
and Scheme
[3 ]
, one of the enantiomers was tentatively drawn for convenience.
10a
Tamura Y.
Yakura T.
Haruta J.
Kita Y.
J. Org. Chem.
1987,
52:
3927
10b
Lewis N.
Wallbank P.
Synthesis
1987,
1103
10c For reviews on phenolic oxidation with hypervalent iodine reagents, see: Pelter A.
Ward RS.
Tetrahedron
2001,
57:
273
10d
Moriarty RM.
Prakash O.
Org. React.
2001,
57:
327
10e For a review on synthetic uses of ortho -quinone monoacetals, see: Quideau S.
Pouységu L.
Org. Prep. Proced. Int.
1999,
31:
617
11 The enantiomeric purity was determined by HPLC analysis. For the analytical conditions and retention times, see ref. 6.
12 We were afraid of racemization in the oxidation of 9 and in the cyclization of 10 . If the reaction process involved dienone i as a transient intermediate, generated by the intermolecular attack of a nucleophile at the C(5), the change in the C(5) hybridization into sp3 might have caused racemization due to the lowered rotational barrier about the C(5)-C(13) bond (Figure
[2 ]
).
Figure 2
13a
Ghosal S.
Majumdar SK.
Chakraborti A.
Aust. J. Chem.
1971,
24:
2733
13b
Chou C.-T.
Swenton JS.
J. Am. Chem. Soc.
1987,
109:
6898
14 The specific rotation of O -methylerysodienone has not been reported.