RSS-Feed abonnieren
DOI: 10.1055/s-2005-864821
Palladium-Catalyzed Suzuki-Miyaura Coupling Reactions Involving β,β-Dihaloenamides: Application to the Synthesis of Disubstituted Ynamides
Publikationsverlauf
Publikationsdatum:
23. März 2005 (online)

Abstract
β,β-Dihaloenamides can be successfully involved in palladium-catalyzed Suzuki-Miyaura coupling reactions. Whereas the resulting trisubstituted (Z)-β-bromoenamides could participate in a second cross-coupling leading to β,β-disubstituted enamides, the (Z)-β-chloroenamides have been converted to disubstituted ynamides by an E2 elimination.
Key words
cross-coupling - palladium - enamides - eliminations - ynamides
- Pd- and Ni-catalyzed cross-coupling reactions with Grignard reagents:
-
1a
Minato A.Suzuki K.Tamao K. J. Am. Chem. Soc. 1987, 109: 1257 -
1b
Braun M.Rahematpura J.Bühne C.Paulitz TC. Synlett 2000, 1070 -
1c
Uenishi J.Ohmi M. Heterocycles 2003, 61: 365 -
1d
Braun M.Hohmann A.Rahematpura J.Bühne C.Grimme S. Chem. Eur. J. 2004, 10: 4584 - 2 Iron-catalyzed coupling reactions between 1,1-dichloro-1-alkenes and Grignard reagents have been recently reported, see:
Dos Santos M.Franck X.Hocquemiller R.Figadère B.Peyrat J.-F.Provot O.Brion J.-D.Alami M. Synlett 2004, 2697 - Cross-coupling reactions with organozinc reagents:
-
3a
Minato A. J. Org. Chem. 1991, 56: 4052 -
3b
Panek JS.Hu T. J. Org. Chem. 1997, 62: 4912 -
3c
Xu C.Negishi E.-I. Tetrahedron Lett. 1999, 40: 431 -
3d
Ogasawara M.Ikeda H.Ohtsuki K.Hayashi T. Chem. Lett. 2000, 776 -
3e
Ogasawara M.Ikeda H.Hayashi T. Angew. Chem. Int. Ed. 2000, 39: 1042 -
3f
Shi J.-C.Zeng X.Negishi E.-I. Org. Lett. 2003, 5: 1825 -
3g
Zeng X.Hu Q.Qian M.Negishi E.-I. J. Am. Chem. Soc. 2003, 125: 13636 -
3h
Shi J.-C.Negishi E.-I. J. Organomet. Chem. 2003, 687: 518 - 4 Cross-coupling reactions with organostannanes:
Shen W.Wang L. J. Org. Chem. 1999, 64: 8873 - Cross-coupling reactions with organoboranes:
-
5a
Roush WR.Riva R. J. Org. Chem. 1988, 53: 710 -
5b
Roush WR.Brown BB.Drozda SE. Tetrahedron Lett. 1988, 29: 3541 -
5c
Roush WR.Moriarty KJ.Brown BB. Tetrahedron Lett. 1990, 31: 6509 -
5d
Roush WR.Koyama K.Curtin ML.Moriarty KJ. J. Am. Chem. Soc. 1996, 118: 7502 -
5e
Shen W. Synlett 2000, 737 -
5f
Bauer A.Miller MW.Vice SF.McCombie SW. Synlett 2001, 254 - For the use of Ba(OH)2 as the base, see:
-
5g
Watanabe T.Miyaura N.Suzuki A. Synlett 1992, 207 -
5h
Baldwin JE.Chesworth R.Parker JS.Russell AT. Tetrahedron Lett. 1995, 36: 9551 -
5i
Wong LS.-M.Sharp LA.Xavier NMC.Turner P.Sherburn MS. Org. Lett. 2002, 4: 1955 - Cross-coupling reactions with alkynylcopper reagents:
-
6a
Ratovelomanana V.Hammoud A.Linstrumelle G. Tetrahedron Lett. 1987, 28: 1649 -
6b
Bryant-Friedrich A.Neidlein R. Synthesis 1995, 1506 -
6c
Shen W.Thomas SA. Org. Lett. 2000, 2: 2857 -
6d
Myers AG.Goldberg SD. Angew. Chem. Int. Ed. 2000, 39: 2732 -
6e
Uenishi J.Matsui K. Tetrahedron Lett. 2001, 42: 4353 -
6f
Uenishi J.Matsui K.Ohmiya H. J. Organomet. Chem. 2002, 653: 141 - Exceptions to this trend appear restricted to particular classes of substrates. 1-Chloro-1-iodo-alkenes having the more reactive carbon-iodine bond [towards oxidative addition of Pd(0) complexes] at the cis position:
-
7a
Alami M.Crousse B.Linstrumelle G. Tetrahedron Lett. 1995, 36: 3687 - 1,1-Dibromoalkenes bearing a suitably located carbon-carbon triple bond in the side chain undergo oxidative addition of Pd(0) complexes at the cis carbon-bromine leading to the alkyne carbopalladation followed by cross-coupling:
-
7b
Torii S.Okumoto H.Tadokoro T.Nishimura A.Rashid MA. Tetrahedron Lett. 1993, 34: 2139 -
7c
Nuss JM.Rennels RA.Levine BH. J. Am. Chem. Soc. 1993, 115: 6991 -
7d
McAlonan H.Montgomery D.Stevenson PJ. Tetrahedron Lett. 1996, 37: 7151 -
8a
Glazunova EY.Lutsenko SV.Efimova IV.Trostyanskaya IG.Kazankova MA.Beletskaya IP. Russ. J. Org. Chem. 1998, 34: 1104 -
8b
Kazankova MA.Trostyanskaya IG.Lutsenko SV.Efimova IV.Beletskaya IP. Russ. J. Org. Chem. 1999, 35: 1273 -
9a
Smithers RH. J. Org. Chem. 1983, 48: 2095 -
9b
Barluenga J.Rodriguez MA.Campos PJ.Asensio G. J. Am. Chem. Soc. 1988, 110: 5567 -
9c
Percy JM.Wilkes RD. Tetrahedron 1997, 53: 14749 -
9d
Uneyama K.Kato T. Tetrahedron Lett. 1998, 39: 587 -
9e
Fujiwara M.Ichikawa J.Okauchi T.Minami T. Tetrahedron Lett. 1999, 40: 7261 - 11
Brückner D. Synlett 2000, 1402 -
14e
The Pd-catalyzed hydrogenolysis of the gem-dibromo-enamide 13 with n-Bu3SnH led to the (Z)-b-bromoenamide 26 (55%), whose configuration was readily assigned by 1H NMR, and to the fully reduced enamide 27 (15%) as a by-product. However, no trace of the (E) geometrical isomer of compound 26 could be detected. A similar hydrogenolysis of the gem-dichloroenamides could not be achieved (Scheme [4] ).
Scheme 4
This result confirms that in b,b-dihaloenamides of type A, the oxidative addition of Pd(0) complexes occurs at the less-hindered carbon-halogen bond, as in the non-hetero-substituted series. For the Pd-catalyzed hydrogenolysis of 1,1-dibromoalkenes, see:
-
14a
Uenishi J.Kawahama R.Yonemitsu O.Tsuji J. J. Org. Chem. 1996, 61: 5716 -
14b
Uenishi J.Kawahama R.Shiga Y.Yonemitsu O.Tsuji J. Tetrahedron Lett. 1996, 37: 6759 -
14c
Uenishi J.Kawahama R.Yonemitsu O.Tsuji J. J. Org. Chem. 1998, 63: 8965 -
14d
Uenishi J.Kawahama R.Izaki Y.Yonemitsu O. Tetrahedron 2000, 56: 3493 - 16 Some chiral disubstituted ynamides have been synthesized from enamides by bromination (Br2 or NBS) leading to stereomeric mixtures of β-bromoenamides, in which the (Z) isomer was selectively converted to the desired disubstituted ynamide by treatment with a base (t-BuOK, THF) whereas the (E) isomer did not react; see:
Wei L.-L.Mulder JA.Xiong H.Zificsak CA.Douglas CJ.Hsung RP. Tetrahedron 2001, 57: 459 - 17
Zificsak CA.Mulder JA.Hsung RP.Rameshkumar C.Wei L.-L. Tetrahedron 2001, 57: 7575 ; and references therein - 18
Witulski B.Gößmann M. Synlett 2000, 1793 - 19
Mulder JA.Kurtz KCM.Hsung RP. Synlett 2003, 1379 ; and references therein -
20a
Frederick MO.Mulder JA.Tracey MR.Hsung RP.Huang J.Kurtz KCM.Shen L.Douglas CJ. J. Am. Chem. Soc. 2003, 125: 2368 -
20b
Dunetz JR.Danheiser RL. Org. Lett. 2003, 5: 4011 -
20c
Zhang Y.Hsung RP.Tracey MR.Kurtz KCM.Vera EL. Org. Lett. 2004, 6: 1151 -
21a
Rodríguez D.Castedo L.Saá C. Synlett 2004, 377 -
21b
Rodríguez D.Castedo L.Saá C. Synlett 2004, 783 -
21c
Tracey MR.Zhang Y.Frederick MO.Mulder JA.Hsung RP. Org. Lett. 2004, 6: 2209
References
Tosylation of but-3-enylamine hydrochloride, benzylamine and p-anisidine (TsCl, Et3N, CH2Cl2, 0 °C to r.t.) afforded the corresponding sulfonamides 1a (58%), 1b (77%) and 1c (84%), respectively. Benzoylation of aminoacetaldehyde dimethylacetal (BzCl, Et3N, cat. DMAP, CH2Cl2, 0 °C) provided the benzamide 1d (87%).
12
Representative Procedure:
N
-Benzyl-
N
-[(
Z
)-2-chloro-2-phenylvinyl]-4-methylbenzenesulfonamide (7).
To a solution of the gem-dichloroenamide 3b (178 mg, 0.500 mmol) in THF (10 mL) were successively added benzeneboronic acid (98 mg, 0.80 mmol, 1.6 equiv), a 1 M aq solution of NaOH (1.50 mL, 1.50 mmol, 3 equiv) and Pd(PPh3)4 (29 mg, 0.025 mmol, 0.05 equiv). After 3 h at reflux, the reaction mixture was cooled to r.t., filtered through a pad of Celite (EtOAc) and the filtrate was evaporated under reduced pressure. The crude material was purified by flash chomatography (petroleum ether-EtOAc, 90:10) to afford 195 mg (98%) of 7 as a white solid; mp 124 °C. IR: 1595, 1490, 1445, 1345, 1160, 1090, 1030, 915, 815, 780, 760, 740 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.76 (d, J = 8.3 Hz, 2 H), 7.37-7.24 (m, 12 H), 6.53 (s, 1 H), 4.81 (s, 2 H), 2.43 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 143.8 (s), 136.7 (s), 136.05 (s), 136.0 (s), 132.9 (s), 129.7 (d, 2 C), 129.4 (d), 128.49 (d, 3 C or 2 C), 128.47 (d, 2 C or 3 C), 128.4 (d), 127.8 (d), 127.3 (d, 2 C), 126.9 (d, 2 C), 122.9 (d), 52.2 (t), 21.6 (q). MS (EI, 70 eV): m/z (%) = 400 (1) [M(37Cl) + H+], 399 (3) [M(37Cl)+], 398 (2) [M(35Cl) + H+], 397 (9) [M(35Cl)+], 362 (1) [M - Cl+], 242 (4) [M - Ts+], 206 (5), 178 (2), 155 (2), 92 (8), 91 (100), 89 (4), 65 (7). Anal. Calcd for C22H20ClNO2S: C, 66.40; H, 5.07; N, 3.52. Found: C, 66.47; H, 4.99; N, 3.48.
In all the cross-couplings investigated, GC-MS and NMR analyses of the crude β-haloenamides indicate a stereoisomeric ratio > 95:5.
15The (Z)-olefinic configuration of the β-chloroenamides of type B was further confirmed by their ability to undergo dehydrochlorination (E2 anti-elimination) by treatment with a base, whereas the (E) geometrical isomers would not react under these conditions, see ref. 16.
22
Representative Procedure:
N
-Benzyl-
N
-(2-phenylethynyl)-4-methylbenzenesulfonamide (
21).
To a solution of β-chloroenamide 7 (100 mg, 0.251 mmol) in toluene (10 mL) were successively added 50% aq NaOH (10 mL) and tetrabutylammonium hydrogensulfate (17 mg, 0.050 mmol, 0.2 equiv) and the resulting mixture was vigorously stirred at r.t. After 7 h, the reaction mixture was cooled to 5 °C, and diluted with H2O and Et2O. The layers were separated and the aqueous phase was extracted with Et2O. The combined extracts were washed with a sat. aq solution of NH4Cl, brine, dried over MgSO4, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum ether-EtOAc, 95:5) to afford 74 mg (81%) of 21 as a pale yellow waxy solid. IR: 3060, 3030, 2235, 1595, 1490, 1445, 1420, 1355, 1160, 1050, 1030, 940, 815, 765, 690, 655 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.77 (d, J = 8.3 Hz, 2 H), 7.30-7.14 (m, 12 H), 4.55 (s, 2 H), 2.40 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 144.7 (s), 134.7 (s), 134.5 (s), 131.1 (d, 2 C), 129.8 (d, 2 C), 128.9 (d, 2 C or 3 C), 128.6 (d, 2 C), 128.2 (d, 3 C), 127.7 (d, 3 C or 2 C), 122.8 (s), 82.7 (s), 71.4 (s), 55.7 (t), 21.7 (q). MS (EI, 70 eV): m/z (%) = 361 (21) [M+], 207 (9), 206 (45) [M - Ts+], 205 (6), 179 (26), 178 (11), 165 (3), 155 (3), 105 (6), 92 (8), 91 (100), 65 (13).