References
Pd- and Ni-catalyzed cross-coupling reactions with Grignard reagents:
1a
Minato A.
Suzuki K.
Tamao K.
J. Am. Chem. Soc.
1987,
109:
1257
1b
Braun M.
Rahematpura J.
Bühne C.
Paulitz TC.
Synlett
2000,
1070
1c
Uenishi J.
Ohmi M.
Heterocycles
2003,
61:
365
1d
Braun M.
Hohmann A.
Rahematpura J.
Bühne C.
Grimme S.
Chem. Eur. J.
2004,
10:
4584
2 Iron-catalyzed coupling reactions between 1,1-dichloro-1-alkenes and Grignard reagents have been recently reported, see: Dos Santos M.
Franck X.
Hocquemiller R.
Figadère B.
Peyrat J.-F.
Provot O.
Brion J.-D.
Alami M.
Synlett
2004,
2697
Cross-coupling reactions with organozinc reagents:
3a
Minato A.
J. Org. Chem.
1991,
56:
4052
3b
Panek JS.
Hu T.
J. Org. Chem.
1997,
62:
4912
3c
Xu C.
Negishi E.-I.
Tetrahedron Lett.
1999,
40:
431
3d
Ogasawara M.
Ikeda H.
Ohtsuki K.
Hayashi T.
Chem. Lett.
2000,
776
3e
Ogasawara M.
Ikeda H.
Hayashi T.
Angew. Chem. Int. Ed.
2000,
39:
1042
3f
Shi J.-C.
Zeng X.
Negishi E.-I.
Org. Lett.
2003,
5:
1825
3g
Zeng X.
Hu Q.
Qian M.
Negishi E.-I.
J. Am. Chem. Soc.
2003,
125:
13636
3h
Shi J.-C.
Negishi E.-I.
J. Organomet. Chem.
2003,
687:
518
4 Cross-coupling reactions with organostannanes: Shen W.
Wang L.
J. Org. Chem.
1999,
64:
8873
Cross-coupling reactions with organoboranes:
5a
Roush WR.
Riva R.
J. Org. Chem.
1988,
53:
710
5b
Roush WR.
Brown BB.
Drozda SE.
Tetrahedron Lett.
1988,
29:
3541
5c
Roush WR.
Moriarty KJ.
Brown BB.
Tetrahedron Lett.
1990,
31:
6509
5d
Roush WR.
Koyama K.
Curtin ML.
Moriarty KJ.
J. Am. Chem. Soc.
1996,
118:
7502
5e
Shen W.
Synlett
2000,
737
5f
Bauer A.
Miller MW.
Vice SF.
McCombie SW.
Synlett
2001,
254
For the use of Ba(OH)2 as the base, see:
5g
Watanabe T.
Miyaura N.
Suzuki A.
Synlett
1992,
207
5h
Baldwin JE.
Chesworth R.
Parker JS.
Russell AT.
Tetrahedron Lett.
1995,
36:
9551
5i
Wong LS.-M.
Sharp LA.
Xavier NMC.
Turner P.
Sherburn MS.
Org. Lett.
2002,
4:
1955
Cross-coupling reactions with alkynylcopper reagents:
6a
Ratovelomanana V.
Hammoud A.
Linstrumelle G.
Tetrahedron Lett.
1987,
28:
1649
6b
Bryant-Friedrich A.
Neidlein R.
Synthesis
1995,
1506
6c
Shen W.
Thomas SA.
Org. Lett.
2000,
2:
2857
6d
Myers AG.
Goldberg SD.
Angew. Chem. Int. Ed.
2000,
39:
2732
6e
Uenishi J.
Matsui K.
Tetrahedron Lett.
2001,
42:
4353
6f
Uenishi J.
Matsui K.
Ohmiya H.
J. Organomet. Chem.
2002,
653:
141
Exceptions to this trend appear restricted to particular classes of substrates. 1-Chloro-1-iodo-alkenes having the more reactive carbon-iodine bond [towards oxidative addition of Pd(0) complexes] at the cis position:
7a
Alami M.
Crousse B.
Linstrumelle G.
Tetrahedron Lett.
1995,
36:
3687
1,1-Dibromoalkenes bearing a suitably located carbon-carbon triple bond in the side chain undergo oxidative addition of Pd(0) complexes at the cis carbon-bromine leading to the alkyne carbopalladation followed by cross-coupling:
7b
Torii S.
Okumoto H.
Tadokoro T.
Nishimura A.
Rashid MA.
Tetrahedron Lett.
1993,
34:
2139
7c
Nuss JM.
Rennels RA.
Levine BH.
J. Am. Chem. Soc.
1993,
115:
6991
7d
McAlonan H.
Montgomery D.
Stevenson PJ.
Tetrahedron Lett.
1996,
37:
7151
8a
Glazunova EY.
Lutsenko SV.
Efimova IV.
Trostyanskaya IG.
Kazankova MA.
Beletskaya IP.
Russ. J. Org. Chem.
1998,
34:
1104
8b
Kazankova MA.
Trostyanskaya IG.
Lutsenko SV.
Efimova IV.
Beletskaya IP.
Russ. J. Org. Chem.
1999,
35:
1273
9a
Smithers RH.
J. Org. Chem.
1983,
48:
2095
9b
Barluenga J.
Rodriguez MA.
Campos PJ.
Asensio G.
J. Am. Chem. Soc.
1988,
110:
5567
9c
Percy JM.
Wilkes RD.
Tetrahedron
1997,
53:
14749
9d
Uneyama K.
Kato T.
Tetrahedron Lett.
1998,
39:
587
9e
Fujiwara M.
Ichikawa J.
Okauchi T.
Minami T.
Tetrahedron Lett.
1999,
40:
7261
10 Tosylation of but-3-enylamine hydrochloride, benzylamine and p -anisidine (TsCl, Et3 N, CH2 Cl2 , 0 °C to r.t.) afforded the corresponding sulfonamides 1a (58%), 1b (77%) and 1c (84%), respectively. Benzoylation of aminoacetaldehyde dimethylacetal (BzCl, Et3 N, cat. DMAP, CH2 Cl2 , 0 °C) provided the benzamide 1d (87%).
11
Brückner D.
Synlett
2000,
1402
12
Representative Procedure:
N
-Benzyl-
N
-[(
Z
)-2-chloro-2-phenylvinyl]-4-methylbenzenesulfonamide (7).
To a solution of the gem -dichloroenamide 3b (178 mg, 0.500 mmol) in THF (10 mL) were successively added benzeneboronic acid (98 mg, 0.80 mmol, 1.6 equiv), a 1 M aq solution of NaOH (1.50 mL, 1.50 mmol, 3 equiv) and Pd(PPh3 )4 (29 mg, 0.025 mmol, 0.05 equiv). After 3 h at reflux, the reaction mixture was cooled to r.t., filtered through a pad of Celite (EtOAc) and the filtrate was evaporated under reduced pressure. The crude material was purified by flash chomatography (petroleum ether-EtOAc, 90:10) to afford 195 mg (98%) of 7 as a white solid; mp 124 °C. IR: 1595, 1490, 1445, 1345, 1160, 1090, 1030, 915, 815, 780, 760, 740 cm-1 . 1 H NMR (300 MHz, CDCl3 ): δ = 7.76 (d, J = 8.3 Hz, 2 H), 7.37-7.24 (m, 12 H), 6.53 (s, 1 H), 4.81 (s, 2 H), 2.43 (s, 3 H). 13 C NMR (75 MHz, CDCl3 ): δ = 143.8 (s), 136.7 (s), 136.05 (s), 136.0 (s), 132.9 (s), 129.7 (d, 2 C), 129.4 (d), 128.49 (d, 3 C or 2 C), 128.47 (d, 2 C or 3 C), 128.4 (d), 127.8 (d), 127.3 (d, 2 C), 126.9 (d, 2 C), 122.9 (d), 52.2 (t), 21.6 (q). MS (EI, 70 eV): m/z (%) = 400 (1) [M(37 Cl) + H+ ], 399 (3) [M(37 Cl)+ ], 398 (2) [M(35 Cl) + H+ ], 397 (9) [M(35 Cl)+ ], 362 (1) [M - Cl+ ], 242 (4) [M - Ts+ ], 206 (5), 178 (2), 155 (2), 92 (8), 91 (100), 89 (4), 65 (7). Anal. Calcd for C22 H20 ClNO2 S: C, 66.40; H, 5.07; N, 3.52. Found: C, 66.47; H, 4.99; N, 3.48.
13 In all the cross-couplings investigated, GC-MS and NMR analyses of the crude β-haloenamides indicate a stereoisomeric ratio > 95:5.
14e The Pd-catalyzed hydrogenolysis of the gem -dibromo-enamide 13 with n -Bu3 SnH led to the (Z )-b-bromoenamide 26 (55%), whose configuration was readily assigned by 1 H NMR, and to the fully reduced enamide 27 (15%) as a by-product. However, no trace of the (E ) geometrical isomer of compound 26 could be detected. A similar hydrogenolysis of the gem -dichloroenamides could not be achieved (Scheme
[4 ]
).
Scheme 4
This result confirms that in b,b-dihaloenamides of type A , the oxidative addition of Pd(0) complexes occurs at the less-hindered carbon-halogen bond, as in the non-hetero-substituted series. For the Pd-catalyzed hydrogenolysis of 1,1-dibromoalkenes, see:
14a
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1996,
61:
5716
14b
Uenishi J.
Kawahama R.
Shiga Y.
Yonemitsu O.
Tsuji J.
Tetrahedron Lett.
1996,
37:
6759
14c
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1998,
63:
8965
14d
Uenishi J.
Kawahama R.
Izaki Y.
Yonemitsu O.
Tetrahedron
2000,
56:
3493
15 The (Z )-olefinic configuration of the β-chloroenamides of type B was further confirmed by their ability to undergo dehydrochlorination (E2 anti -elimination) by treatment with a base, whereas the (E ) geometrical isomers would not react under these conditions, see ref. 16.
16 Some chiral disubstituted ynamides have been synthesized from enamides by bromination (Br2 or NBS) leading to stereomeric mixtures of β-bromoenamides, in which the (Z ) isomer was selectively converted to the desired disubstituted ynamide by treatment with a base (t -BuOK, THF) whereas the (E ) isomer did not react; see: Wei L.-L.
Mulder JA.
Xiong H.
Zificsak CA.
Douglas CJ.
Hsung RP.
Tetrahedron
2001,
57:
459
17
Zificsak CA.
Mulder JA.
Hsung RP.
Rameshkumar C.
Wei L.-L.
Tetrahedron
2001,
57:
7575 ; and references therein
18
Witulski B.
Gößmann M.
Synlett
2000,
1793
19
Mulder JA.
Kurtz KCM.
Hsung RP.
Synlett
2003,
1379 ; and references therein
20a
Frederick MO.
Mulder JA.
Tracey MR.
Hsung RP.
Huang J.
Kurtz KCM.
Shen L.
Douglas CJ.
J. Am. Chem. Soc.
2003,
125:
2368
20b
Dunetz JR.
Danheiser RL.
Org. Lett.
2003,
5:
4011
20c
Zhang Y.
Hsung RP.
Tracey MR.
Kurtz KCM.
Vera EL.
Org. Lett.
2004,
6:
1151
21a
Rodríguez D.
Castedo L.
Saá C.
Synlett
2004,
377
21b
Rodríguez D.
Castedo L.
Saá C.
Synlett
2004,
783
21c
Tracey MR.
Zhang Y.
Frederick MO.
Mulder JA.
Hsung RP.
Org. Lett.
2004,
6:
2209
22
Representative Procedure:
N
-Benzyl-
N
-(2-phenylethynyl)-4-methylbenzenesulfonamide (
21).
To a solution of β-chloroenamide 7 (100 mg, 0.251 mmol) in toluene (10 mL) were successively added 50% aq NaOH (10 mL) and tetrabutylammonium hydrogensulfate (17 mg, 0.050 mmol, 0.2 equiv) and the resulting mixture was vigorously stirred at r.t. After 7 h, the reaction mixture was cooled to 5 °C, and diluted with H2 O and Et2 O. The layers were separated and the aqueous phase was extracted with Et2 O. The combined extracts were washed with a sat. aq solution of NH4 Cl, brine, dried over MgSO4 , filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum ether-EtOAc, 95:5) to afford 74 mg (81%) of 21 as a pale yellow waxy solid. IR: 3060, 3030, 2235, 1595, 1490, 1445, 1420, 1355, 1160, 1050, 1030, 940, 815, 765, 690, 655 cm-1 . 1 H NMR (300 MHz, CDCl3 ): δ = 7.77 (d, J = 8.3 Hz, 2 H), 7.30-7.14 (m, 12 H), 4.55 (s, 2 H), 2.40 (s, 3 H). 13 C NMR (75 MHz, CDCl3 ): δ = 144.7 (s), 134.7 (s), 134.5 (s), 131.1 (d, 2 C), 129.8 (d, 2 C), 128.9 (d, 2 C or 3 C), 128.6 (d, 2 C), 128.2 (d, 3 C), 127.7 (d, 3 C or 2 C), 122.8 (s), 82.7 (s), 71.4 (s), 55.7 (t), 21.7 (q). MS (EI, 70 eV): m/z (%) = 361 (21) [M+ ], 207 (9), 206 (45) [M - Ts+ ], 205 (6), 179 (26), 178 (11), 165 (3), 155 (3), 105 (6), 92 (8), 91 (100), 65 (13).