Subscribe to RSS
DOI: 10.1055/s-2005-868475
New Simple Chiral Phosphine Oxazolidine Ligands: Easy Synthesis and Application in the Palladium-Catalyzed Asymmetric Allylic Alkylation
Publication History
Publication Date:
21 April 2005 (online)
Abstract
New types of chiral phosphine-oxazolidines have been easily synthesized in a straightforward one-pot process starting from optically active aminoalcohols. They were screened in the Pd-catalyzed asymmetric allylic alkylations of 1,3-diphenyl-2-propenyl acetate with dimethylmalonate. The reaction proceeds smoothly in good to excellent yields and excellent stereoselectivity was obtained (up to 97%).
Key words
phosphines - oxazolidines - allylic alkylations
-
1a
Tsuji J. Palladium Reagents and Catalysis Innovations in Organic Synthesis Wiley; New York: 1995. -
1b
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395 -
1c
Helmchen G.Kudis S.Sennhenn P.Steihagen H. Pure Appl. Chem. 1997, 69: 513 -
1d
Johannsen M.Jorgensen KA. Chem. Rev. 1998, 98: 1689 -
1e
Hayashi T. J. Organomet. Chem. 1999, 576: 195 -
1f
Helmchen G. J. Organomet. Chem. 1999, 576: 203 -
1g
Trost BM.Lee C. Catalytic Asymmetric Synthesis 2nd ed.:Ojima I. Wiley-VCH; New York: 2000. Chap. 8E. p.503-650 -
1h
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 -
2a
Prétôt R.Pfaltz A. Angew. Chem. Int. Ed. 1998, 37: 323 -
2b
Steinhagen H.Reggelin M.Helmchen G. Angew. Chem., Int. Ed. Engl. 1997, 36: 2108 -
2c
Bower JF.Jumnah R.Williams AC.Williams JMJ. J. Chem. Soc., Perkin Trans. 1 1997, 1411 -
2d
Yonehara K.Hashizume T.Mori K.Ohe K.Uemura S. J. Org. Chem. 1999, 64: 9374 - 3
Okuyama Y.Nakano H.Hongo H. Tetrahedron: Asymmetry 2000, 11: 1193 -
4a
Porte AM.Reibenspies JH.Burgess K. J. Am. Chem. Soc. 1998, 120: 9180 -
4b
Hou D.-R.Burgess K. Org. Lett. 1999, 1: 1745 -
4c
Hou D.-R.Reibenspies JH.Burgess K. J. Org. Chem. 2001, 66: 206 -
4d
Jones G.Richards CJ. Tetrahedron Lett. 2001, 42: 5553 -
4e
Jones G.Richards CJ. Tetrahedron: Asymmetry 2004, 15: 653 -
4f
Gilbertson SR.Xie D.Fu Z. J. Org. Chem. 2001, 66: 7240 -
4g
Gilbertson SR.Chang C.-WT. Chem. Commun. 1997, 975 -
4h
Xu G.Gilbertson SR. Tetrahedron Lett. 2002, 43: 2811 - For representative examples, see:
-
5a
Braga AL.Appelt HR.Schneider PH.Silveira CC.Wessjohann LA. Tetrahedron: Asymmetry 1999, 10: 1733 -
5b
Braga AL.Silva SJN.Lüdtke DS.Drekener RL.Silveira CC.Rocha JBT.Wessjohann LA. Tetrahedron Lett. 2002, 43: 7329 -
5c
Braga AL.Paixão MW.Lüdtke DS.Silveira CC.Rodrigues OED. Org. Lett. 2003, 5: 2635 -
5d
Braga AL.Milani P.Paixão MW.Zeni G.Rodrigues OED.Alves EF. Chem. Commun. 2004, 2488 - For previous reports from our group on palladium-catalyzed asymmetric allylic alkylations, see:
-
6a
Schneider PH.Schrekker HS.Silveira CC.Wessjohann LA.Braga AL. Eur. J. Org. Chem. 2004, 2715 -
6b
Braga AL.Paixão MW.Milani P.Silveira CC.Rodrigues OED.Alves EF. Synlett 2004, 1297 - 7
McKennon MJ.Meyers AI.Drauz K.Schwarm M. J. Org. Chem. 1993, 58: 3568 - 9
Leutenegger U.Umbricht G.Fahrni C.von Matt P.Pfaltz A. Tetrahedron 1992, 48: 2143 - For examples of monodentate ligands in palladium-catalyzed asymmetric allylic alkylation see:
-
10a
Dai X.Virgil S. Tetrahedron Lett. 1999, 40: 1245 -
10b
Fuji K.Ohnishi H.Moriyama S.Tanaka K.Kawabata T.Tsubaki K. Synlett 2000, 351 -
10c
Gavrilov KN.Polosukhin AI.Bondarev OG.Lyubimov SE.Lyssenko KA.Petrovskii PV.Davankov V. A. J. Mol. Cat. A: Chem. 2003, 196: 39 -
10d
Dai W.-M.Yim KKY.Leung WH.Haynes RK. Tetrahedron: Asymmetry 2003, 14: 2821
References
Typical procedure for the preparation of phosphine oxazolidines 1: To a 50 mL round-bottomed flask equipped with Dean-Stark apparatus, benzene (30 mL), l-phenyl-alaninol (0.302 g, 2.0 mmol), paraformaldehyde (0.03 g, 3.0 mmol) and p-toluenesulfonic acid (cat.) were added. The mixture was heated under reflux for 4 h. After this time, a second portion of paraformaldehyde (0.03 g, 3.0 mmol) and diphenylphosphine (0.446 g, 2.4 mmol) were added. This mixture was heated under reflux for an additional 4 h and then cooled to room temperature. The benzene was removed under vaccum, the residue was dissolved in of CH2Cl2 (30 mL), and washed with 0.1 M NaOH solution. After drying over magnesium sulfate and filtration, the solvent was removed in vacuo yielding a yellow solid, which was purified by flash chromatography (hexane-EtOAc, 9:1). The product was dried in vacuo to afford 0.596 g (1.65 mmol, 82%) of the phosphine-oxazolidine 1a.
(
S
)-4-Benzyl-1,3-oxazolan-3-ylmethyl(diphenyl)phos-phane (
1a)
Mp 71-72 °C; [α]D
20 +30 (c 0.7, CH2Cl2); 1H NMR (CDCl3, 400 MHz): δ = 7.51-7.04 (m, 15 H), 4.47 (dd, 2 H, J
1 = 7.76 Hz, J
2 = 5.76 Hz), 3.85-3.82 (m, 1 H), 3.48 (d, 2 H, J = 7.00 Hz), 3.43-3.40 (m, 2 H), 2.79 (dd, 1 H, J
1 = 13.70 Hz, J
2 = 5.88 Hz), 2.51 (dd, 1 H J
1 = 13.70 Hz, J
2 = 5.88 Hz); 13C NMR (CDCl3, 100 MHz): δ = 131.87-126.25 (m), 87.35 (d, J = 6.30 Hz), 68.60, 61.08 (d, J = 9.60 Hz), 55.58 (d, J = 87.80 Hz), 39.40; 31P NMR (CDCl3, 161.98 MHz): δ = 29.21; LRMS: m/z (%) = 361 (2, M+), 162 (100), 91 (50), 77 (67); Anal. Calcd for C23H24NOP: C, 76.43; H, 6.69; N, 3.88. Found: C, 76.19, H, 6.81; N 3.77.
(
S
)-4-Isopropyl-1,3-oxazolan-3-ylethyl(diphenyl)phos-phane (
1b)
Yield: 0.439 g (1.40 mmol, 70%); mp 60-62 °C; [α]D
20 +14 (c 0.7, CH2Cl2); 1H NMR (CDCl3, 400 MHz): δ = 7.81-7.44 (m, 10 H), 4.58 (d, 1 H, J = 6.08 Hz), 4.39 (d, 1 H, J = 6.08 Hz), 3.88 (dd, 1 H, J
1 = 8.24 Hz, J
2 = 7.16 Hz), 3.57 (dd, 1 H, J
1 = 16.00 Hz, J
2 = 5.16 Hz), 3.45-3.37 (m, 2 H), 2.77-2.72 (m, 1 H), 1.53-1.45 (m, 1 H), 0.71 (d, 3 H, J = 6.07 Hz), 0.69 (d, 3 H, J = 6.07 Hz); 13C NMR (CDCl3, 100 MHz): δ = 132.30-127.20 (m), 86.55 (d, J = 8.10 Hz), 72.45 (d, J = 22.30 Hz), 66.06, 55.57 (d, J = 176.30 Hz), 30.04, 19.36, 17.56. 31P NMR (CDCl3, 161.98 MHz): δ = 28.59; LRMS: m/z (%) = 313 (2, M+), 128 (100), 84 (19), 77 (14), 69 (14), 55 (13), 42 (51); Anal. Calcd for C19H24NOP: C, 72.82; H, 7.72; N, 4.47. Found: C, 72.57; H, 7.85; N 4.22.
(
S
)-4-Methyl-1,3-oxazolan-3-ylmethyl(diphenyl)phos-phane (
1c)
Yield: 0.325 g (1.14 mmol, 57%); bp 63-65 °C (0.30 mmHg); [α]D
20 +9 (c 0.7, CH2Cl2); 1H NMR (CDCl3, 400 MHz): δ = 7.47-6.94 (m, 10 H), 4.11 (d, 1 H, J = 5.04 Hz), 3.91 (d, 1 H, J = 5.04 Hz), 3.59-3.52 (m, 1 H), 3.18 (dd, 1 H, J
1 = 15.04 Hz, J
2 = 7.42 Hz), 3.00 (dd, 1 H, J
1 = 15.04 Hz, J
2 = 6.22 Hz), 3.05-2.71 (m, 2 H), 0.93 (d, 3 H, J = 6.22 Hz); 13C NMR (CDCl3, 100 MHz): δ = 136.81-127.85 (m), 86.72 (d, J = 5.76 Hz), 70.11, 60.54 (d, J = 10.16 Hz), 53.82 (d, J = 89.16 Hz), 15.05. 31P NMR (CDCl3, 161.98 MHz): δ = 29.32; LRMS: m/z (%) = 285 (2, M+), 100 (100), 77 (11), 70 (30), 42 (27), 28 (11); Anal. Calcd for C17H20NOP: C, 71.56; H, 7.06; N, 4.91. Found: C, 71.63, H, 6.90; N 4.77.
(
S
)-4-Phenyl-1,3-oxazolan-3-ylmethyl(diphenyl)phos-phane (
1d)
Yield: 0.493 g (1.42 mmol, 71%); mp 108-109 °C; [α]D
20 +90 (c 0.7, CH2Cl2); 1H NMR (CDCl3, 400 MHz): δ = 7.64-7.11 (m, 15 H), 5.02 (d, 1 H, J = 3.84 Hz), 4.41 (d, 1 H, J = 3.84 Hz), 4.17 (dd, 1 H, J
1 = 7.82 Hz, J
2 = 7.30 Hz), 3.83 (dd, 1 H, J
1 = 7.82 Hz, J
2 = 7.30 Hz), 3.58-3.50 (m, 2 H). 3.25 (dd, 1 H, J
1 = 14.76 Hz, J
2 = 5.48 Hz); 13C NMR (CDCl3, 100 MHz): δ = 137.95-127.64 (m), 87.71, 72.66, 69.72 (d, J = 13.80 Hz), 52.26 (d, J = 87.20 Hz); 31P NMR (CDCl3, 161.98 MHz): δ = 29.95, LRMS: m/z (%) = 347 (2)(M+), 176 (100), 91 (62), 77 (33), 42 (89); Anal. Calcd for C22H22NOP: C, 76.06; H, 6.38; N, 4.03. Found: C, 76.30; H, 6.31; N, 3.88.
(
R
)-4-Phenyl-1,3-oxazolan-3-ylethyl(diphenyl)phos-phane (
ent-
1d)
Yield: 0.507 g (1.46 mmol, 73%); mp 108-109 ºC; [α]D
20 -90 (c 0.7, CH2Cl2); for the other spectral and analytical data see 1d.
General Procedure for the Asymmetric Allylic Alkylation: A THF (1 mL) solution of [Pd(η3-C3H5)Cl]2 (1 mg, 0.025 mmol, 2.5 mol%), catalyst 1a-d (10 mol%) was stirred for 30 min under an argon atmosphere and then 1,3-diphenyl-2-propenyl acetate (0.252 g, 1.0 mmol) was added. The mixture was stirred for 10 min and a solution of sodium dimethyl malonate, prepared from dimethyl malonate (0.264 g, 2.0 mmol) and sodium hydride (0.036 g, 1.5 mmol) in THF (3 mL), was added at room temperature. The reaction mixture was then stirred for the time specified in Table [1] , at room temperature. After this time, saturated NH4Cl was added and it was extracted with CH2Cl2 (3 × 15 mL) and the combined organic layers were dried with MgSO4. The solvent was evaporated and the crude product was purified by flash chromatography eluting with hexane-EtOAc (98:2). The enantiomeric excess of 4 was determined by 1H NMR (CDCl3) analysis with chiral shift reagent Eu(hfc)3 and the absolute configuration was determined by comparison of the optical rotation.