Subscribe to RSS
DOI: 10.1055/s-2005-872891
Georg Thieme Verlag Stuttgart KG · New York
Physiological Changes of Fagus sylvatica Seedlings Infected with Phytophthora citricola and the Contribution of its Elicitin “Citricolin” to Pathogenesis
Publication History
Received: May 23, 2002
Accepted: August 31, 2005
Publication Date:
08 November 2005 (online)
Abstract
Beech seedlings were infected with the root rot pathogen Phytophthora citricola to study its impact on leaf physiology and water status. Net photosynthesis rate decreased two days after inoculation in infected seedlings. In contrast, electron quantum yield of photosystem II, leaf water potential, and total water consumption were only slightly impaired until 6 dpi. At the same time, wilt symptoms occurred on leaves. These results indicate the involvement of a mobile signal triggering the early changes in leaf physiology by root infection. As the elicitin gene of P. citricola was induced during root infection, we purified and characterised the elicitin protein and tested its ability to change leaf physiological parameters of beech and tobacco plants. P. citricola produced a single acidic elicitin (citricolin), which caused necrosis and decreased gas exchange of tobacco leaves. Furthermore, it induced an oxidative burst in tobacco cell suspension culture. However, none of these effects were observed in beech.
Key words
Phytophthora citricola - Fagus sylvatica - Nicotiana tabacum - elicitin - citricolin - gas exchange - water potential
References
- 1 Böhm J., Hahn A., Schubert R., Bahnweg G., Adler N., Nechwatal J., Öhlmann R., Oßwald W.. Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophora infestans and Phytophthora citricola in their respective host plants. Journal of Phytopathology. (1999); 147 409-416
- 2 Brummer M., Arend M., Fromm J., Schlenzig A., Osswald W. F.. Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L. roots infected with Phytophthora quercina. . Physiological and Molecular Plant Pathology. (2002); 61 109-120
- 3 Capasso R., Cristinzio G., Evidente A., Visca C., Parente A.. Phytophorin, a phytotoxic peptide, and its phytotoxic aggregates from Phytophthora nicotianae. . Phytopathologia mediterranea. (1997); 36 67-73
- 4 Colas V., Conrod S., Venard P., Keller H., Ricci P., Panabieres F.. Elicitin genes expressed in vitro by certain tobacco isolates of Phytophthora parasitica are down regulated during compatible interactions. Molecular Plant-Microbe Interactions. (2001); 14 326-335
- 5 Devergne J. C., Bonnet P., Panabieres F., Blein J. P., Ricci P.. Migration of the fungal protein cryptogein within tobacco plants. Plant Physiology. (1992); 99 843-847
- 6 Dorey S., Kopp M., Geoffroy P., Fritig B., Kauffmann S.. Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiology. (1999); 121 163-171
- 7 Duniway J. M.. Changes in resistance to water transport in safflower during the development of Phytophthora root rot. Phytopathology. (1977); 67 331-337
- 8 Fleischmann F., Göttlein A., Rodenkirchen H., Lütz C., Oßwald W.. Biomass, nutrient and pigment content of beech (Fagus sylvatica) saplings infected with Phytophthora citricola, P. cambivora, P. pseudosyringae and P. undulata. . Forest Pathology. (2004); 34 79-92
- 9 Fleischmann F., Schneider D., Matyssek R., Osswald W. F.. Investigations on net CO2 assimilation, transpiration and root growth of Fagus sylvatica infested with four different Phytophthora species. Plant Biology. (2002); 4 144-152
-
10 Hall R..
Effect of root pathogens on plant water relations. Ayres, P. G. and Boddy, L., eds. Water, Fungi and Plants. Cambridge; Cambridge University Press (1986): 241-265 - 11 Heiser I., Fromm J., Giefing M., Koehl J., Jung T., Osswald W.. Investigations on the action of Phytophthora quercina, P. citricola and P. gonapodyides toxins on tobacco plants. Plant Physiology and Biochemistry. (1999); 37 73-81
- 12 Hooker W. J.. Compendium of Potato Diseases. St. Paul; American Phytopathological Society (1981)
- 13 Kamoun S., van West P., de Jong A. J., de Groot K. E., Vleeshouwers V., Govers F.. A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Molecular Plant-Microbe Interactions. (1997); 10 13-20
- 14 Keen N. T., Wang M. C., Bartnicki-Garcia S., Zentmyer G. A.. Phytotoxicity of mycolaminarins-β-1,3-glucans from Phytophthora spp. Physiological Plant Pathology. (1975); 7 91-97
- 15 Kiefer E., Heller W., Ernst D.. A simple and effective protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Molecular Biology Reporter. (2000); 18 33-39
- 16 Koehl J., Osswald W., Kohn H., Elstner E. F., Heiser I.. Different responses of two tobacco cultivars and their cell suspension cultures to quercinin, a novel elicitin from Phytophthora quercina. . Plant Physiology and Biochemistry. (2003); 41 261-269
- 17 Lascombe M. B., Ponchet M., Venard P., Milat M. L., Blein J. P., Prange T.. The 1.45 angstrom resolution structure of the cryptogein-cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. Acta Crystallographica Section D, Biological Crystallography. (2002); 58 1442-1447
- 18 Luque J., Cohen M., Save R., Biel C., Alvarez I. F.. Effects of three fungal pathogens on water relations, chlorophyll fluorescence and growth of Quercus suber L. Annals of Forest Science,. (1999); 56 19-26
- 19 Maurel M., Robin C., Capron G., Desprez-Loustau M. L.. Effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. Forest Pathology. (2001); 31 353-369
- 20 Maurel M., Robin C., Simonneau T., Loustau D., Dreyer E., Desprez-Loustau M. L.. Stomatal conductance and root-to-shoot signalling in chestnut saplings exposed to Phytophthora cinnamomi or partial soil drying. Functional Plant Biology. (2004); 31 41-51
- 21 McManus P. S., Ewers F. W.. The effect of Cryphonectria parasitica on water relations of American chestnut. Physiological and Molecular Plant Pathology. (1990); 36 461-470
- 22 Mikes V., Milat M. L., Ponchet M., Ricci P., Blein J. P.. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Letters. (1997); 416 190-192
- 23 Osman H., Vauthrin S., Mikes V., Milat M. L., Panabieres F., Marais A., Brunie S., Maume B., Ponchet M., Blein J. P.. Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Molecular Biology of the Cell. (2001); 12 2825-2834
-
24 Oßwald W., Koehl J., Heiser I., Nechwatal J., Fleischmann F..
New insights in the genus Phytophthora and current diseases these pathogens cause in their ecosystems. Esser, K., Lüttge, U., Beyschlag, W., and Murata, J., eds. Progress in Botany. Berlin, Heidelberg; Springer Verlag (2004): 436-466 - 25 Ploetz R. C., Schaffer B.. Effects of flooding and Phytophthora root rot on net gas exchange and growth of avocado. Phytopathology. (1989); 79 204-208
- 26 Ponchet M., Panabieres F., Milat M. L., Mikes V., Montillet J.-L., Suty L., Triantaphylides C., Tirillye Y., Blein J.-P.. Are elicitins cryptograms in plant-oomycete communications?. Cellular and Molecular Life Sciences. (1999); 56 1020-1047
- 27 Ricci P., Bonnet P., Huet J. C., Sallantin M., Beauvaiscante F., Bruneteau M., Billard V., Michel G., Pernollet J. C.. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired-resistance in tobacco. European Journal of Biochemistry. (1989); 183 555-563
- 28 Schramm R. J., Wolf F. T.. The transpiration of black shankinfected tobacco. Journal of the Elisha Mitchell Scientific Society. (1954); 70 255-261
- 29 Sterne R. E., Kaufmann M. R., Zentmyer G. A.. Effect of Phytophthora root rot on water relations of avocado: interpretation with a water transport model. Phytopathology. (1978); 68 595-602
- 30 Wolf F. T.. The pathology of tobacco black shank. Phytopathology. (1933); 23 605-612
- 31 Wolf F. T., Wolf F. A.. Toxicity as a fcator in tobacco black shank. Journal of the Elisha Mitchell Scientific Society. (1954); 70 244-255
- 32 Woodward J. R., Keane P. J., Stone B. A.. Structures and properties of wilt-inducing polysaccharides from Phytophthora species. Physiological Plant Pathology. (1980); 16 439-454
- 33 Zanetti A., Beauvais F., Huet J. C., Pernollet J. C.. Movement of elicitins, necrosis-inducing proteins secreted by Phytophthora Sp, in tobacco. Planta. (1992); 187 163-170
- 34 Zhou M. J., Diwu Z. J., Panchuk-Voloshina N., Haugland R. P.. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Analytical Biochemistry. (1997); 253 162-168
F. Fleischmann
Section Pathology of Woody Plants
Technische Universität München
Am Hochanger 13
85354 Freising-Weihenstephan
Germany
Email: fleischmann@wzw.tum.de
Guest Editor: R. Matyssek