Subscribe to RSS
DOI: 10.1055/s-2005-922760
Microwave-Assisted, Solvent-Free Bischler Indole Synthesis
Publication History
Publication Date:
16 December 2005 (online)
Abstract
The solid-state reaction between anilines and phenacyl bromides in the presence of an equimolecular amount of sodium bicarbonate gives N-phenacylanilines. Microwave irradiation of mixtures of these compounds with anilinium bromides at 540 W for 45-60 s provides a mild, general, and environmentally friendly method for the synthesis of 2-arylindoles in 50-56% overall yields. A one-pot variation of the method, involving irradiation of 2:1 mixtures of anilines and phenacyl bromides, was also developed, allowing a simplified experimental procedure and leading to improved yields (52-75%).
Key words
indole synthesis - aniline monoalkylation - solvent-free synthesis - microwave-assisted synthesis
- 2
Tanaka K. Solvent-Free Organic Synthesis Wiley; New York: 2003. - For reviews of indole-related natural products, see:
-
3a
Somei M.Yamada F. Nat. Prod. Rep. 2003, 30: 216 -
3b
Hibino S.Chosi T. Nat. Prod. Rep. 2002, 19: 148 -
3c
Hibino S.Chosi T. Nat. Prod. Rep. 2001, 18: 66 -
3d
Lounasmaa M.Tolvanen A. Nat. Prod. Rep. 2000, 17: 175 - 4 For a summary of the applications of indoles, see:
Gribble GW. Five-membered rings with one heteroatom and fused carbocyclic derivatives, In Comprehensive Heterocyclic Chemistry 2nd ed., Vol. 2:Bird CW.Katrizky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1995. p.207 - For recent reviews on indole synthesis, see:
-
5a
Tois T.Franzén R.Koskinen A. Tetrahedron 2003, 59: 5395 -
5b
Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000, 1045 - For summaries of these methods, see:
-
6a
Brown RK. Indoles Part 1:Houlighan WJ. Wiley-Interscience; New York: 1972. Chap. 2. -
6b
Sundberg RG. Pyrroles and their Benzo Derivatives, In Comprehensive Heterocyclic Chemistry Vol. 4:Bird CW.Cheeseman GWH.Katrizky AR.Rees CW. Pergamon Press; Oxford: 1984. p.313 -
6c
Sundberg RJ. Indoles Academic Press; New York: 1996. -
7a
Taylor EC.Katz AH.Salgado-Zamora H.McKillop AM. Tetrahedron Lett. 1985, 26: 5963 -
7b
Rudisill DE.Stille JK. J. Org. Chem. 1989, 54: 5856 -
7c
Ezquerra J.Pedregal C.Lamas C.Barluenga J.Pérez M.García-Martín MA.González JM. J. Org. Chem. 1996, 61: 5804 -
7d
Kondo Y.Kojima S.Sakamoto T. Heterocycles 1996, 61: 5804 -
7e
Kondo Y.Kojima S.Sakamoto T. J. Org. Chem. 1997, 62: 6507 -
7f
Dai W.-M.Guo D.-S.Sun L.-P. Tetrahedron Lett. 2001, 42: 5275 - For reviews of palladium-catalyzed cyclization reactions, see:
-
8a
Larock RC. J. Organomet. Chem. 1999, 576: 111 -
8b
Li JJ.Gribble GW. Palladium in Heterocyclic Chemistry. A Guide for the Synthetic Chemist Pergamon Press; Oxford: 2000. -
8c
Cacchi S.Fabrizi G.Parisi LM. Heterocycles 2002, 58: 667 -
9a
Cacchi S.Carnicelli V.Marinelli F. J. Organomet. Chem. 1994, 475: 289 -
9b
Yu MS.Leon LL.McGuire MA.Botha G. Tetrahedron Lett. 1998, 39: 9347 -
9c
Larock RC.Yum EK.Refvik MD. J. Org. Chem. 1998, 63: 7652 -
9d
Yasuhara A.Kanamori Y.Kaneko M.Numata A.Kondo Y.Sakamoto T. J. Chem. Soc., Perkin Trans. 1 1999, 529 ; and references therein from the same group -
9e
Esseveldt BCJ.Delft FL.Gelder R.Rutjes FPJT. Org. Lett. 2003, 5: 1717 -
9f
Kamijo S.Yamamoto Y. J. Org. Chem. 2003, 68: 4764 - 10
Hiroya K.Itoh S.Sakamoto T. J. Org. Chem. 2004, 69: 1126 - 11
Arcadi A.Bianchi G.Marinelli F. Synthesis 2004, 610 -
12a
Kondo Y.Kojima S.Sakamoto T. J. Org. Chem. 1997, 62: 6507 ; and references therein from the same group -
12b
Koradin C.Dohle W.Rodriguez AL.Schmid B.Knochel P. Tetrahedron 2003, 59: 1571 ; and references therein from the same group -
13a
Yasuhara A.Kanimori Y.Kaneko M.Numata A.Kondo Y.Sakamoto T. J. Chem. Soc., Perkin Trans. 1 1999, 529 -
13b
Botta M.Summa V.Corelli F.Pietro GD.Lombardi P. Tetrahedron: Asymmetry 1996, 7: 1263 -
13c
Fagnola MC.Candidiani I.Visentin G.Cabri W.Zarini F.Mongelli N.Bedeschi A. Tetrahedron Lett. 1997, 38: 2307 - 14
Cacchi S.Fabrizi G.Parisi LM. Org. Lett. 2003, 5: 2919 -
15a
Sakamoto T.Kondo Y.Iwashita S.Nagano T.Yamanaka H. Chem. Pharm. Bull. 1988, 36: 1305 -
15b
Fagnola MC.Candiani I.Visentin G.Cabri W.Zarini F.Mongelli N.Bedeschi A. Tetrahedron Lett. 1997, 38: 2307 -
15c
Zhang HC.Ye H.Moretto AF.Brumfield KK.Maryanoff BE. Org. Lett. 2000, 2: 89 -
15d
Wu TYH.Ding S.Gray NS.Schultz PG. Org. Lett. 2001, 3: 3827 -
15e
Barluenga J.Tricado M.Rubio E.González JM. Angew. Chem. Int. Ed. 2003, 42: 2406 -
15f
Huang Q.Larock RC. J. Org. Chem. 2003, 68: 7342 -
15g
Amjad M.Knight DW. Tetrahedron Lett. 2004, 45: 539 -
15h
Hong KB.Lee CW.Yum EK. Tetrahedron Lett. 2004, 45: 693 -
16a
Gassman PG.Van Bergen TJ.Gilbert DP.Cue BW. J. Am. Chem. Soc. 1974, 96: 5495 -
16b
Gassman PG.Van Bergen TJ. Org. Synth. Coll. Vol. 6 Wiley; New York: 1988. p.601 - 17 For a review, see:
Dalpozzo R.Bartoli G. Curr. Org. Chem. 2005, 9: 163 - 18
Sundberg RJ. The Chemistry of Indoles Academic Press; New York: 1970. -
19a For an example using protic acids, see:
Black DSC.Bowyer MC.Bowyer PK.Ivory AJ.Kim M.Kumar N.McConnell DB.Popiolek M. Aust. J. Chem. 1994, 47: 1741 -
19b For an example using Lewis acids or acidic resins, see:
Bashford KE.Cooper AL.Kane PD.Moody CJ.Muthusamy S.Swann E. J. Chem. Soc., Perkin Trans. 1 2002, 1672 - 20
Pchalek K.Jones AW.Wekking MMT.Black DSC. Tetrahedron 2005, 61: 77 -
21a
Nordlander JE.Catalane DB.Kotian KD.Stevens RM.Haky JE. J. Org. Chem. 1981, 46: 778 -
21b
Sundberg RJ.Laurino JP. J. Org. Chem. 1984, 49: 249 - 22
Buu-Hoi NP.Saint-Duf G.Deschamps R.Bigot P.Hieu H.-T. J. Chem. Soc. C 1971, 2606 -
23a
Black DSC.Gatehouse BMKC.Théobald F.Wong LCH. Aust. J. Chem. 1980, 33: 343 -
23b
Black DSC.Kumar N.Wong LCH. Aust. J. Chem. 1986, 39: 15 - For representative reviews and books on microwave-assisted organic synthesis, see:
-
24a
Caddick S. Tetrahedron 1995, 38: 10403 -
24b
de la Hoz A.Díaz-Ortiz A.Moreno A.Langa F. Eur. J. Org. Chem. 2000, 22: 3659 -
24c
Perreux L.Loupy A. Tetrahedron 2001, 57: 9199 -
24d
Lidstrom P.Tierney J.Wathey B.Westman J. Tetrahedron 2001, 57: 9225 -
24e
Santagada V.Perissutti E.Caliendo G. Curr. Med. Chem. 2002, 9: 1251 -
24f
Microwaves in Organic Synthesis
Loupy A. Wiley-VCH; Weinheim: 2002. -
24g
Varma RS. Advances in Green Chemistry: Chemical Synthesis Using Microwave Irradiation AstraZeneca Research Foundation; India: 2002. -
24h
Hayes BL. Aldrichimica Acta 2004, 37: 66 -
24i
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 -
24j
Tierney J.Lindstrom P. Microwave Assisted Organic Synthesis Blackwell; London: 2005. -
25a
Pérez R.Pérez E.Suárez M.González L.Loupy A.Jimeno ML.Ochoa C. Org. Prep. Proced. Int. 1997, 29: 671 -
25b
Limousin C.Cleophax J.Loupy A.Petit A. Tetrahedron 1998, 54: 13567 -
25c
Dandia A.Arya K.Khaturia S.Yadav P. ARKIVOC 2005, (xii): 80 -
26a
General Procedure for the Two-Step Method.N-Alkylation: 2 mmol of the suitable phenacyl bromide (prepared according ref. 26b) was slowly added to a mixture of 2 mmol of the suitable arylamine and 300 mg of NaHCO3 (the order of addition of the reagents is not normally of consequence, but it is important to use the method described here in the case of the anisidine derivatives, which otherwise lead to dialkylation products). The reaction mixture was stirred at r.t. with occasional cooling in tap water, soon becoming semisolid and finally solid. This solid was kept at r.t. for 3 h, when completion of the reaction was verified by TLC. Then, H2O was added to the mixture and the separated solid was filtered, washed with H2O, and dried, giving materials with sufficient purity for the next step. If desired, the N-phenacylanilines can be recrystallized from EtOH. Cyclization: a mixture of 1 mmol of the suitable N-phen-acylaniline and 1.5 mmol of the corresponding anilinium hydrobromide with 3-4 drops of DMF was irradiated in a domestic microwave oven at 540 W for the time period specified in Table [1] . After completion of the reaction the mixture was loaded onto a silica gel column and pure 2-arylindoles were obtained by chromatography, eluting with a gradient starting from 9:1 PE-EtOAc. Alternatively, the mixture could also be extracted with EtOAc, washed with H2O, dried and evaporated before chromatography. All indole derivatives were previously known, and showed the expected 1H NMR and 13C NMR spectra, and melting points very similar to those previously described (Table [1] ).
-
26b
Cowper RM.Davidson LH. Org. Synth. Coll. Vol. 2 Wiley; New York: 1962. p.480 -
27a
Bischler A.Brion H. Ber. Dtsch. Chem. Ges. 1892, 25: 2860 -
27b
Bischler A.Firemann P. Ber. Dtsch. Chem. Ges. 1893, 26: 1336 - 28
Blades CE.Wilds AL. J. Org. Chem. 1956, 21: 1013 - 29
Smith AB.Visnick M.Haseltine JN.Sprengeler PA. Tetrahedron 1986, 42: 2957 - 30
Hudkins RL.Diebold JL.Marsh FD. J. Org. Chem. 1995, 60: 6218 - 31
Junjappa H. Synthesis 1975, 798 - 32
Brown F.Mann FG. J. Chem. Soc. 1948, 847 - 33
Crowther AF.Mann FG.Purdie D. J. Chem. Soc. 1943, 58 - 34 Macleod C., McKiernan G. J., Guthrie E. J., Farrugia L. J., Hamprecht D. W., Macritchie J., Hartley R. C.; J. Org. Chem.; 2003, 68: 387
- 35
Black DSC.Kumar N.McCornell DB. Tetrahedron 2001, 57: 2203
References and Notes
Permanent address: Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
36General Procedure for the One-Pot Synthesis of 2-Arylindoles from Phenacyl Bromides and Anilines under Microwave Irradiation. Phenacyl bromide (1 mmol) was stirred with aniline (2 mmol) at r.t. without any base to neutralize the liberated HBr. The mixture was kept at r.t. with occasional stirring for 3 h. To the solid mixture, containing N-phenacyl aniline and anilinium hydrobromide, was added 3-4 drops of DMF and the mixture was irradiated in a microwave oven at 600 W for 1 min. After completion of the reaction, the mixture was treated as described for the two-step method to give the pure 2-arylindoles.