Subscribe to RSS
DOI: 10.1055/s-2006-925128
Metformin Increases Insulin Sensitivity and Plasma β-endorphin in Human Subjects
Publication History
Received 23 May 2005
Accepted after revision 25 October 2005
Publication Date:
08 March 2006 (online)
Abstract
Metformin has been widely used in clinical type 2 diabetes treatment and prevention. The present study was designed to explore the effect on people with a sedentary lifestyle at therapeutic doses. Twenty-two physically-inactive volunteers with normal glucose tolerance were studied. Escalating doses of metformin in low-dose (250 mg), intermediate-dose (500 mg), and high-dose (750 mg) treatment three times per day were administrated into each subject for a three-week treatment period. Fasting plasma glucose, A1C, HOMA-IR for insulin resistance, lipid profile, and plasma β-endorphin-like immunoreactivity (BER) were measured before treatment and weekly at the end of each dosing period. Metformin significantly reduced fasting plasma glucose and HOMA-IR in healthy humans after receiving this treatment at therapeutic doses including low-dose (5 %, 17 %), intermediate-dose (6 %, 25 %) and high-dose treatment (6 %, 21 %). Plasma BER was also increased from 135.46 ± 61.73 pg/ml to 137.52 ± 66.11 pg/ml by low-dosing (p = 0.39), to 139.17 ± 64.08 pg/ml by intermediate-dosing (p = 0.32), and to 149.59 ± 63.32 pg/ml by high-dosing (p < 0.05). Also, serum cholesterol decreased significantly using metformin at therapeutic doses including low-dose (4 %), intermediate-dose (8 %) and high-dose treatment (7 %). However, metformin failed to modify levels of serum HDL-cholesterol and C-reactive protein (CRP) in healthy subjects. Also, the reduction of serum cholesterol by metformin did not correlate to the increase in insulin sensitivity. In conclusion, metformin causes a significant parallel increase in insulin sensitivity and plasma β-endorphin level in human subjects.
Keywords
Metformin - insulin sensitivity - β-endorphin - physical inactivity
References
- 1 Reaven G M, Chen Y D. Insulin resistance, its consequences, and coronary heart disease. Must we choose one culprit?. Circulation. 1996; 93 1780-1783
- 2 Hawley J A. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev. 2004; 20 383-393
- 3 Diabetes Prevention Program Research Group . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346 393-403
- 4 Olefsky J M, Garvey W T, Henry R R, Brillon D, Matthaei S, Freidenberg G R. Cellular mechanisms of insulin resistance in non-insulin-dependent (type II) diabetes. Am J Med. 1988; 85 86-105
- 5 Cheng J T, Liu I M, Hsu C F. Rapid induction of insulin resistance in opioid mu-receptor knock-out mice. Neurosci Lett. 2003; 339 139-142
- 6 Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T. Infusion of β-endorphin improves insulin resistance in fructose-fed rats. Horm Metab Res. 2004; 36 571-577
- 7 Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T. Mediation of beta-endorphin in exercise-induced improvement in insulin resistance in obese Zucker rats. Diabetes Metab Res Rev. 2005; 21 75-182
- 8 Inzucchi S E, Maggs D G, Spollett G R, Page S L, Rife F S, Walton V, Shulman G I. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med. 1998; 338 867-872
- 9 Hundal R S, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi S E, Schumann W C, Petersen K F, Landau B R, Shulman G I. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000; 49 2063-2069
- 10 Stumvoll M, Nurjhan N, Periello G, Dailey G, Gerich J E. Metabolic effects of metformin in non-insulin dependent diabetes mellitus. N Engl J Med. 1995; 333 550-554
- 11 Nestler J E, Jakubowicz D J, Evans W S, Pasquali R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N Engl J Med. 1998; 338 1876-1880
- 12 Vandermolen D T, Ratts V S, Evans W S, Stovall D W, Kauma S W, Nestler J E. Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic ovary syndrome who are resistant to clomiphene citrate alone. Fertil Steril. 2001; 75 310-315
- 13 Glueck C J, Fontaine R N, Wang P, Subbiah M T, Weber K, Illig E, Streicher P, Sieve-Smith L, Tracy T M, Lang J E, McCullough P. Metformin reduces weight, centripetal obesity, insulin, leptin, and low density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism. 2001; 50 856-861
- 14 Kay J P, Alemzadeh R, Langley G, D'Angelo L, Smith P, Holshouser S. Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism. 2001; 50 1457-1461
- 15 De Jager J, Kooy A, Lehert P, Bets D, Wulffele M G, Teerlink T, Scheffer P G, Schalkwijk C G, Donker A J, Stehouwer C D. Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial. J Intern Med. 2005; 257 100-109
- 16 Charles M A, Morange P, Eschwege E, Andre P, Vague P, Juhan-Vague I. Effect of weight change and metformin on fibrinolysis and the von Willebrand factor in obese nondiabetic subjects: the BIGPRO1 Study. Biguanides and the Prevention of the Risk of Obesity. Diabetes Care. 1998; 21 1967-1972
- 17 Charles M A, Eschwege E, Grandmottet P, Isnard F, Cohen J M, Bensoussan J L, Berche H, Chapiro O, Andre P, Vague P, Juhan-Vague I, Bard J M, Safar M. Treatment with metformin of non-diabetic men with hypertension, hypertriglyceridaemia and central fat distribution: the BIGPRO 1.2 trial. Diabetes Metab Res Rev. 2000; 16 2-7
- 18 Iannello S, Camuto M, Cavaleri A, Milazzo P, Pisano M G, Bellomia D, Belfiore F. Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids. Diabetes, Obesity & Metabolism. 2004; 6 8-15
- 19 Binnert C, Seematter G, Tappy L, Giusti V. Effect of metformin on insulin sensitivity and insulin secretion in female obese patients with normal glucose tolerance. Diabetes & Metabolism. 2003; 29 125-132
- 20 Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics. 2001; 107 E55
- 21 Chen J J, Huang L H. Development and verification of validity and reliability of the IPAQ Taiwan version. Int J Behavioral Medicine. 2004; 11 141
- 22 Robert F, Fendri S, Hary L, Lacroix C, Andrejak M, Lalau J D. Kinetics of plasma and erythrocyte metformin after acute administration in healthy subjects. Diabetes Metab. 2003; 29 279-283
- 23 Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28 412-419
- 24 Dowse G K, Gareeboo H, Zimmet P Z, Alberti K G, Tuomilehto J, Fareed D, Brissonnette L G, Finch C F. High prevalence of NIDDM and impaired glucose tolerance in Indian, Creole, and Chinese Mauritians. Diabetes. 1990; 39 390-396
- 25 Kriska A M, La Porte R E, Pettitt D J, Charles M A, Nelson R G, Kuller L H, Bennett P H, Knowler W C. The association of physical activity with obesity, fat distribution and glucose intolerance in Pima Indians. Diabetologia. 1993; 36 863-869
- 26 Taylor R, Ram P, Zimmet P, Raper L R, Ringrose H. Physical activity and prevalence of diabetes in Melanesian and Indian men in Fiji. Diabetologia. 1984; 27 578-582
- 27 Cederholm J, Wibell L. Glucose tolerance and physical activity in a health survey of middle-aged subjects. Acta Med Scand. 1985; 217 373-378
- 28 Lindgarde F, Saltin B. Daily physical activity, work capacity and glucose tolerance in lean and obese normoglycaemic middle-aged men. Diabetologia. 1981; 20 134-138
- 29 Pereira M A, Kriska A M, Joswiak M L, Dowse G K, Collins V R, Zimmet P Z, Gareeboo H, Chitson P, Hemraj F, Purran A, Fareed D. Physical inactivity and glucose intolerance in the multiethnic island of Mauritius. Med Sci Sports Exerc. 1995; 27 1626-1634
- 30 Wang J T, Ho L T, Tang K T, Wang L M, Chen Y D, Reaven G M. Effect of habitual physical activity on age-related glucose intolerance. J Am Geriatr Soc. 1989; 37 203-209
- 31 Regensteiner J G, Shetterly S M, Mayer E J, Eckel R H, Haskell W L, Baxter J, Hamman R F. Relationship between habitual physical activity and insulin area among individuals with impaired glucose tolerance. The San Luis Valley Diabetes Study. Diabetes Care. 1995; 18 490-497
- 32 King D S, Dalsky G P, Staten M A, Clutter W E, Van Houten D R, Holloszy J O. Insulin action and secretion in endurance-trained and untrained humans. J Appl Physiol. 1987; 63 2247-2252
- 33 Rodnick K J, Haskell W L, Swislocki A L, Foley J E, Reaven G M. Improved insulin action in muscle, liver, and adipose tissue in physically trained human subjects. Am J Physiol. 1987; 253 E489-E495
- 34 Gan S K, Kriketos A D, Ellis B A, Thompson C H, Kraegen E W, Chisholm D J. Changes in Aerobic Capacity and Visceral Fat but not Myocyte Lipid Levels Predict Increased Insulin Action After Exercise in Overweight and Obese Men. Diabetes Care. 2003; 26 1706-1713
- 35 Goodpaster B H, Katsiaras A, Kelley D E. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003; 52 2191-2197
- 36 Hickey M S, Gavigan K E, McCammon M R, Tyndall G L, Pories W J, Israel R G, Houmard J A. Effects of 7 days of exercise training on insulin action in morbidly obese men. Clin Exerc Physiol. 1999; 1 24-28
- 37 Hughes V A, Fiatarone M A, Fielding R A, Kahn B B, Ferrara C M, Shepherd P, Fisher E C, Wolfe R R, Elahi D, Evans W J. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol Endocrin Metab. 1993; 264 E855-E862
- 38 Bruce C R, Kriketos A D, Cooney G J, Hawley J A. Dissociation of muscle triglyceride content and insulin action after exercise training in patients with type 2 diabetes. Diabetolgia. 2004; 47 23-30
- 39 Dela F, Larsen J J, Mikines K J, Ploug T, Petersen L N, Galbo H. Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training. Diabetes. 1995; 44 1010-1020
- 40 Kang J, Robertson R J, Hagberg J M, Kelley D E, Goss F L, Da Silva S G, Suminski R R, Utter A C. Effect of exercise intensity on glucose and insulin metabolism in obese individuals and obese NIDDM patients. Diabetes Care. 1996; 19 341-349
- 41 Poirier P, Tremblay A, Broderick T, Catellier C, Tancrede G, Nadeau A. Impact of moderate aerobic exercise training on insulin sensitivity in type 2 diabetic men treated with oral hypoglycemic agents: is insulin sensitivity enhanced only in nonobese subjects?. Med Sci Monit. 2002; 8 CR59-CR65
- 42 Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman M F, Goodyear L J, Moller D E. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001; 108 1167-1174
- 43 Musi N, Hirshman M F, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson J M, Ljunqvist O, Efendic S, Moller D E, Thorell A, Goodyear L J. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 2002; 51 2074-2081
- 44 Bloomgarden Z T. American Diabetes Association Annual Meeting, 1998. Insulin resistance, exercise, and obesity. Diabetes Care. 1999; 22 517-522
- 45 Clark D O. Physical activity efficacy and effectiveness among older adults and minorities. Diabetes Care. 1997; 20 1176-1182
- 46 Park H, Kaushik V K, Constant S, Prentki M, Przybytkowski E, Ruderman N B, Saha A K. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem. 2002; 277 32 571-32 577
- 47 Ruderman N B, Cacicedo J M, Itani S, Yagihashi N, Saha A K, Ye J M, Chen K, Zou M, Carling D, Boden G, Cohen R A, Keaney J, Kraegen E W, Ido Y. Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. Biochem Soc Trans. 2003; 31 202-206
- 48 Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman N B, Cohen R A. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem. 2004; 279 47 898-47 905
- 49 Gunton J E, Delhanty P J, Takahashi S, Baxter R C. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab. 2003; 88 1323-1332
- 50 Cheng J T, Liu I M, Tzeng T F, Tsai C C, Lai T Y. Plasma glucose lowering effect of beta-endorphin in streptozotocin-induced diabetic rats. Horm Metab Res. 2002; 34 570-576
- 51 Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T. Infusion of beta-endorphin improves insulin resistance in fructose-fed rats. Horm Metab Res. 2004; 36 571-577
- 52 Curry D L, Li C H. Stimulation of insulin secretion by beta-endorphin (1 - 27 and 1 - 31). Life Sci. 1987; 40 2053-2058
- 53 Locatelli A, Spotti D, Caviezel F. The regulation of insulin and glucagon secretion by opiates: a study with naloxone in healthy humans. Acta Diabetol Lat. 1985; 22 25-31
- 54 Cheng J T, Liu I M, Chi T C, Tzeng T F, Lu F H, Chang C J. Plasma glucose-lowering effect of tramadol in streptozotocin-induced diabetic rats. Diabetes. 2001; 50 2815-2821
- 55 Liu I M, Chen W C, Cheng J T. Mediation of beta-endorphin by isoferulic acid to lower plasma glucose in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2003; 307 1196-1204
- 56 Cheng J T, Liu I M, Tzeng T F, Chen W C, Hayakawa S, Yamamoto T. Release of beta-endorphin by caffeic acid to lower plasma glucose in streptozotocin-induced diabetic rats. Horm Metab Res. 2003; 35 251-258
- 57 Wilcock C, Bailey C J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1999; 24 49-57
- 58 Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol. 2000; 59 887-890
T. J. Wu, MD
Department of Internal Medicine · College of Medicine · National Cheng Kung University
138, Sheng-Li Rd. · Tainan · Taiwan 70101
Phone: +886(6)235-3535 ext 5387
Fax: +886(6)302-8130 ·
Email: djwu@mail.ncku.edu.tw